This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 321

2010 Princeton University Math Competition, 7

Square $ABCD$ is divided into four rectangles by $EF$ and $GH$. $EF$ is parallel to $AB$ and $GH$ parallel to $BC$. $\angle BAF = 18^\circ$. $EF$ and $GH$ meet at point $P$. The area of rectangle $PFCH$ is twice that of rectangle $AGPE$. Given that the value of $\angle FAH$ in degrees is $x$, find the nearest integer to $x$. [asy] size(100); defaultpen(linewidth(0.7)+fontsize(10)); pair D2(pair P) { dot(P,linewidth(3)); return P; } // NOTE: I've tampered with the angles to make the diagram not-to-scale. The correct numbers should be 72 instead of 76, and 45 instead of 55. pair A=(0,1), B=(0,0), C=(1,0), D=(1,1), F=intersectionpoints(A--A+2*dir(-76),B--C)[0], H=intersectionpoints(A--A+2*dir(-76+55),D--C)[0], E=F+(0,1), G=H-(1,0), P=intersectionpoints(E--F,G--H)[0]; draw(A--B--C--D--cycle); draw(F--A--H); draw(E--F); draw(G--H); label("$A$",D2(A),NW); label("$B$",D2(B),SW); label("$C$",D2(C),SE); label("$D$",D2(D),NE); label("$E$",D2(E),plain.N); label("$F$",D2(F),S); label("$G$",D2(G),W); label("$H$",D2(H),plain.E); label("$P$",D2(P),SE); [/asy]

1978 IMO Longlists, 4

Two identically oriented equilateral triangles, $ABC$ with center $S$ and $A'B'C$, are given in the plane. We also have $A' \neq S$ and $B' \neq S$. If $M$ is the midpoint of $A'B$ and $N$ the midpoint of $AB'$, prove that the triangles $SB'M$ and $SA'N$ are similar.

1967 IMO Longlists, 29

$A_0B_0C_0$ and $A_1B_1C_1$ are acute-angled triangles. Describe, and prove, how to construct the triangle $ABC$ with the largest possible area which is circumscribed about $A_0B_0C_0$ (so $BC$ contains $B_0, CA$ contains $B_0$, and $AB$ contains $C_0$) and similar to $A_1B_1C_1.$

2005 Sharygin Geometry Olympiad, 10

Cut the non-equilateral triangle into four similar triangles, among which not all are the same.

1989 Czech And Slovak Olympiad IIIA, 4

The lengths of the sides of triangle $T'$ are equal to the lengths of the medians of triangle $T$. If triangles $T$ and $T'$ coincide in one angle, they are similar. Prove it.

2021 Balkan MO Shortlist, G7

Let $ABC$ be an acute scalene triangle. Its $C$-excircle tangent to the segment $AB$ meets $AB$ at point $M$ and the extension of $BC$ beyond $B$ at point $N$. Analogously, its $B$-excircle tangent to the segment $AC$ meets $AC$ at point $P$ and the extension of $BC$ beyond $C$ at point $Q$. Denote by $A_1$ the intersection point of the lines $MN$ and $PQ$, and let $A_2$ be defined as the point, symmetric to $A$ with respect to $A_1$. Define the points $B_2$ and $C_2$, analogously. Prove that $\triangle ABC$ is similar to $\triangle A_2B_2C_2$.

1975 All Soviet Union Mathematical Olympiad, 205

a) The triangle $ABC$ was turned around the centre of the circumscribed circle by the angle less than $180$ degrees and thus was obtained the triangle $A_1B_1C_1$. The corresponding segments $[AB]$ and $[A_1B_1]$ intersect in the point $C_2, [BC]$ and $[B_1C_1]$ -- $A_2, [AC]$ and $[A_1C_1]$ -- $B_2$. Prove that the triangle $A_2B_2C_2$ is similar to the triangle $ABC$. b) The quadrangle $ABCD$ was turned around the centre of the circumscribed circle by the angle less than $180$ degrees and thus was obtained the quadrangle $A_1B_1C_1D_1$. Prove that the points of intersection of the corresponding lines ( $(AB$) and $(A_1B_1), (BC)$ and $(B_1C_1), (CD)$ and $(C_1D_1), (DA)$ and $(D_1A_1)$ ) are the vertices of the parallelogram.

1993 Tournament Of Towns, (366) 5

A paper triangle with the angles $20^o$, $20^o$ and $140^o$ is cut into two triangles by the bisector of one of its angles. Then one of these triangles is cut into two by its bisector, and so on. Prove that it is impossible to get a triangle similar to the initial one. (AI Galochkin)

1957 Moscow Mathematical Olympiad, 362

(a) A circle is inscribed in a triangle. The tangent points are the vertices of a second triangle in which another circle is inscribed. Its tangency points are the vertices of a third triangle. The angles of this triangle are identical to those of the first triangle. Find these angles. (b) A circle is inscribed in a scalene triangle. The tangent points are vertices of another triangle, in which a circle is inscribed whose tangent points are vertices of a third triangle, in which a third circle is inscribed, etc. Prove that the resulting sequence does not contain a pair of similar triangles.

1985 AIME Problems, 4

A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985. [asy] size(200); pair A=(0,1), B=(1,1), C=(1,0), D=origin; draw(A--B--C--D--A--(1,1/6)); draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1)); pair point=( 0.5 , 0.5 ); //label("$A$", A, dir(point--A)); //label("$B$", B, dir(point--B)); //label("$C$", C, dir(point--C)); //label("$D$", D, dir(point--D)); label("$1/n$", (11/12,1), N, fontsize(9));[/asy]

1965 AMC 12/AHSME, 37

Point $ E$ is selected on side $ AB$ of triangle $ ABC$ in such a way that $ AE: EB \equal{} 1: 3$ and point $ D$ is selected on side $ BC$ such that $ CD: DB \equal{} 1: 2$. The point of intersection of $ AD$ and $ CE$ is $ F$. Then $ \frac {EF}{FC} \plus{} \frac {AF}{FD}$ is: $ \textbf{(A)}\ \frac {4}{5} \qquad \textbf{(B)}\ \frac {5}{4} \qquad \textbf{(C)}\ \frac {3}{2} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ \frac {5}{2}$

1968 AMC 12/AHSME, 18

Side $AB$ of triangle $ABC$ has length $8$ inches. Line $DEF$ is drawn parallel to $AB$ so that $D$ is on segment $AC$, and $E$ is on segment $BC$. Line $AE$ extended bisects angle $FEC$. If $DE$ has length $5$ inches, then the length of $CE$, in inches, is: $\textbf{(A)}\ \dfrac{51}{4} \qquad \textbf{(B)}\ 13 \qquad \textbf{(C)}\ \dfrac{53}{4} \qquad \textbf{(D)}\ \dfrac{40}{3} \qquad \textbf{(E)}\ \dfrac{27}{2} $

2008 Oral Moscow Geometry Olympiad, 1

Each of two similar triangles was cut into two triangles so that one of the resulting parts of one triangle is similar to one of the parts of the other triangle. Is it true that the remaining parts are also similar? (D. Shnol)

2010 All-Russian Olympiad, 3

Let $O$ be the circumcentre of the acute non-isosceles triangle $ABC$. Let $P$ and $Q$ be points on the altitude $AD$ such that $OP$ and $OQ$ are perpendicular to $AB$ and $AC$ respectively. Let $M$ be the midpoint of $BC$ and $S$ be the circumcentre of triangle $OPQ$. Prove that $\angle BAS =\angle CAM$.

2013 Oral Moscow Geometry Olympiad, 4

Similar triangles $ABM, CBP, CDL$ and $ADK$ are built on the sides of the quadrilateral $ABCD$ with perpendicular diagonals in the outer side (the neighboring ones are oriented differently). Prove that $PK = ML$.

2022 Ecuador NMO (OMEC), 5

Let $ABC$ be a 90-degree triangle with hypotenuse $BC$. Let $D$ and $E$ distinct points on segment $BC$ and $P, Q$ be the foot of the perpendicular from $D$ to $AB$ and $E$ to $AC$, respectively. $DP$ and $EQ$ intersect at $R$. Lines $CR$ and $AB$ intersect at $M$ and lines $BR$ and $AC$ intersect at $N$. Prove that $MN \parallel BC$ if and only if $BD=CE$.

2022 Belarusian National Olympiad, 9.1

Given an isosceles triangle $ABC$ with base $BC$. On the sides $BC$, $AC$ and $AB$ points $X,Y$ and $Z$ are chosen respectively such that triangles $ABC$ and $YXZ$ are similar. Point $W$ is symmetric to point $X$ with respect to the midpoint of $BC$. Prove that points $X,Y,Z$ and $W$ lie on a circle.

Brazil L2 Finals (OBM) - geometry, 2023.2

Consider a triangle $ABC$ with $AB < AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. A line starting from $B$ cuts the lines $AO$ and $AH$ at $M$ and $M'$ so that $M'$ is the midpoint of $BM$. Another line starting from $C$ cuts the lines $AH$ and $AO$ at $N$ and $N'$ so that $N'$ is the midpoint of $CN$. Prove that $M, M', N, N'$ are on the same circle.

2001 AIME Problems, 13

In a certain circle, the chord of a $d$-degree arc is 22 centimeters long, and the chord of a $2d$-degree arc is 20 centimeters longer than the chord of a $3d$-degree arc, where $d<120.$ The length of the chord of a $3d$-degree arc is $-m+\sqrt{n}$ centimeters, where $m$ and $n$ are positive integers. Find $m+n.$

2006 Oral Moscow Geometry Olympiad, 6

Given triangle $ABC$ and points $P$. Let $A_1,B_1,C_1$ be the second points of intersection of straight lines $AP, BP, CP$ with the circumscribed circle of $ABC$. Let points $A_2, B_2, C_2$ be symmetric to $A_1,B_1,C_1$ wrt $BC,CA,AB$, respectively. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are similar. (A. Zaslavsky)

2009 China Girls Math Olympiad, 6

Circle $ \Gamma_{1},$ with radius $ r,$ is internally tangent to circle $ \Gamma_{2}$ at $ S.$ Chord $ AB$ of $ \Gamma_{2}$ is tangent to $ \Gamma_{1}$ at $ C.$ Let $ M$ be the midpoint of arc $ AB$ (not containing $ S$), and let $ N$ be the foot of the perpendicular from $ M$ to line $ AB.$ Prove that $ AC\cdot CB\equal{}2r\cdot MN.$

1996 Iran MO (3rd Round), 2

Let $ABCD$ be a convex quadrilateral. Construct the points $P,Q,R,$ and $S$ on continue of $AB,BC,CD,$ and $DA$, respectively, such that \[BP=CQ=DR=AS.\] Show that if $PQRS$ is a square, then $ABCD$ is also a square.

2006 All-Russian Olympiad Regional Round, 10.6

Through the point of intersection of the altitudes of an acute triangle $ABC$ three circles pass through, each of which touches one of the sides triangle at the foot of the altitude . Prove that the second intersection points of the circles are the vertices of a triangle similar to the original one.

1990 IMO, 1

Chords $ AB$ and $ CD$ of a circle intersect at a point $ E$ inside the circle. Let $ M$ be an interior point of the segment $ EB$. The tangent line at $ E$ to the circle through $ D$, $ E$, and $ M$ intersects the lines $ BC$ and $ AC$ at $ F$ and $ G$, respectively. If \[ \frac {AM}{AB} \equal{} t, \] find $\frac {EG}{EF}$ in terms of $ t$.

1985 IMO Longlists, 83

Let $\Gamma_i, i = 0, 1, 2, \dots$ , be a circle of radius $r_i$ inscribed in an angle of measure $2\alpha$ such that each $\Gamma_i$ is externally tangent to $\Gamma_{i+1}$ and $r_{i+1} < r_i$. Show that the sum of the areas of the circles $\Gamma_i$ is equal to the area of a circle of radius $r =\frac 12 r_0 (\sqrt{ \sin \alpha} + \sqrt{\text{csc} \alpha}).$