This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 467

1974 Czech and Slovak Olympiad III A, 6

Let a unit square $\mathcal D$ be given in the plane. For any point $X$ in the plane denote $\mathcal D_X$ the image of $\mathcal D$ in rotation with respect to origin $X$ by $+90^\circ.$ Find the locus of all $X$ such that the area of union $\mathcal D\cup\mathcal D_X$ is at most 1.5.

2022 Cyprus JBMO TST, 2

Let $ABCD$ be a square. Let $E, Z$ be points on the sides $AB, CD$ of the square respectively, such that $DE\parallel BZ$. Assume that the triangles $\triangle EAD, \triangle ZCB$ and the parallelogram $BEDZ$ have the same area. If the distance between the parallel lines $DE$ and $BZ$ is equal to $1$, determine the area of the square.

2020 Yasinsky Geometry Olympiad, 2

Let $ABCD$ be a square, point $E$ be the midpoint of the side $BC$. On the side $AB$ mark a point $F$ such that $FE \perp DE$. Prove that $AF + BE = DF$. (Ercole Suppa, Italy)

2016 Oral Moscow Geometry Olympiad, 3

Two squares are arranged as shown in the picture. Prove that the areas of shaded quadrilaterals are equal. [img]https://3.bp.blogspot.com/-W50DOuizFvY/XT6wh3-L6sI/AAAAAAAAKaw/pIW2RKmttrwPAbrKK3bpahJz7hfIZwM8QCK4BGAYYCw/s400/Oral%2BSharygin%2B2016%2B10.11%2Bp3.png[/img]

1982 Tournament Of Towns, (021) 2

A square is subdivided into $K^2$ equal smaller squares. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself). Find the minimum number of links in this broken line. (A Andjans, Riga)

1999 Tournament Of Towns, 5

A square is cut into $100$ rectangles by $9$ straight lines parallel to one of the sides and $9$ lines parallel to another. If exactly $9$ of the rectangles are actually squares, prove that at least two of these $9$ squares are of the same size . (V Proizvolov)

2023 Yasinsky Geometry Olympiad, 6

Given a square $ABCD$, point $E$ is the midpoint of $AD$. Let $F$ be the foot of the perpendicular drawn from point $B$ on $EC$. Point $K$ on $AB$ is such that $\angle DFK = 90^o$. The point $N$ on the $CE$ is such that $\angle NKB = 90^o$. Prove that the point $N$ lies on the segment $BD$. (Matvii Kurskyi) [img]https://cdn.artofproblemsolving.com/attachments/4/2/d42b8c8117ec1d5e5c5b981904779b156fce93.png[/img]

Novosibirsk Oral Geo Oly VIII, 2016.4

The two angles of the squares are adjacent, and the extension of the diagonals of one square intersect the diagonal of another square at point $O$ (see figure). Prove that $O$ is the midpoint of $AB$. [img]https://cdn.artofproblemsolving.com/attachments/7/8/8daaaa55c38e15c4a8ac7492c38707f05475cc.png[/img]

2016 Oral Moscow Geometry Olympiad, 6

Given a square sheet of paper with a side of $2016$. Is it possible to bend its not more than ten times, construct a segment of length $1$?

Cono Sur Shortlist - geometry, 1993.5

Tags: geometry , square
A block of houses is a square. There is a courtyard there in which a gold medal has fallen. Whoever calculates how long the side of said apple is, knowing that the distances from the medal to three consecutive corners of the apple are, respectively, $40$ m, $60$ m and $80$ m, will win the medal.

2017 BMT Spring, 13

$4$ equilateral triangles of side length $1$ are drawn on the interior of a unit square, each one of which shares a side with one of the $4$ sides of the unit square. What is the common area enclosed by all $4$ equilateral triangles?

2011 Bundeswettbewerb Mathematik, 1

Prove that you can't split a square into finitely many hexagons, whose inner angles are all less than $180^o$.

2024 Junior Balkan Team Selection Tests - Romania, P2

Let $M$ be the midpoint of the side $AD$ of the square $ABCD.$ Consider the equilateral triangles $DFM{}$ and $BFE{}$ such that $F$ lies in the interior of $ABCD$ and the lines $EF$ and $BC$ are concurrent. Denote by $P{}$ the midpoint of $ME.$ Prove that" [list=a] [*]The point $P$ lies on the line $AC.$ [*]The halfline $PM$ is the bisector of the angle $APF.$ [/list] [i]Adrian Bud[/i]

2002 Estonia National Olympiad, 1

Points $K$ and $L$ are taken on the sides $BC$ and $CD$ of a square $ABCD$ so that $\angle AKB = \angle AKL$. Find $\angle KAL$.

2020 Malaysia IMONST 1, 3

Tags: circles , geometry , square
Given a square with area $A$. A circle lies inside the square, such that the circle touches all sides of the square. Another square with area $B$ lies inside the circle, such that all its vertices lie on the circle. Find the value of $\frac{A}{B}.$

Novosibirsk Oral Geo Oly VIII, 2019.3

A square sheet of paper $ABCD$ is folded straight in such a way that point $B$ hits to the midpoint of side $CD$. In what ratio does the fold line divide side $BC$?

2002 Germany Team Selection Test, 2

Let $A_1$ be the center of the square inscribed in acute triangle $ABC$ with two vertices of the square on side $BC$. Thus one of the two remaining vertices of the square is on side $AB$ and the other is on $AC$. Points $B_1,\ C_1$ are defined in a similar way for inscribed squares with two vertices on sides $AC$ and $AB$, respectively. Prove that lines $AA_1,\ BB_1,\ CC_1$ are concurrent.

1993 Tournament Of Towns, (385) 3

Three angles of a non-convex, non-self-intersecting quadrilateral are equal to $45$ degrees (i.e. the last equals $225$ degrees). Prove that the midpoints of its sides are vertices of a square. (V Proizvolov)

1997 Denmark MO - Mohr Contest, 2

Tags: area , square , geometry
Two squares, both with side length $1$, are arranged so that one has one vertex in the center of the other. Determine the area of the gray area. [img]https://1.bp.blogspot.com/-xt3pe0rp1SI/XzcGLgEw1EI/AAAAAAAAMYM/vFKxvvVuLvAJ5FO_yX315X3Fg_iFaK2fACLcBGAsYHQ/s0/1997%2BMohr%2Bp2.png[/img]

1941 Moscow Mathematical Olympiad, 081

a) Prove that it is impossible to divide a rectangle into five squares of distinct sizes. b) Prove that it is impossible to divide a rectangle into six squares of distinct sizes.

2009 Postal Coaching, 4

Tags: area , square , geometry
Determine the least real number $a > 1$ such that for any point $P$ in the interior of a square $ABCD$, the ratio of the areas of some two triangle $PAB, PBC, PCD, PDA$ lies in the interval $[1/a, a]$.

1994 Portugal MO, 2

Consider in a square $[ABCD]$ a point $E$ on the side $AB$, different from $A$ and $B$. On the side $BC$ consider the point $F$ such that $\angle AED = \angle DEF$ . Prove that $EF = AE + FC$.

1947 Moscow Mathematical Olympiad, 129

How many squares different in size or location can be drawn on an $8 \times 8$ chess board? Each square drawn must consist of whole chess board’s squares.

2000 Denmark MO - Mohr Contest, 1

Tags: area , midpoint , square
The quadrilateral $ABCD$ is a square of sidelength $1$, and the points $E, F, G, H$ are the midpoints of the sides. Determine the area of quadrilateral $PQRS$. [img]https://1.bp.blogspot.com/--fMGH2lX6Go/XzcDqhgGKfI/AAAAAAAAMXo/x4NATcMDJ2MeUe-O0xBGKZ_B4l_QzROjACLcBGAsYHQ/s0/2000%2BMohr%2Bp1.png[/img]

2003 German National Olympiad, 3

Consider a $N\times N$ square board where $N\geq 3$ is an odd integer. The caterpillar Carl sits at the center of the square; all other cells contain distinct positive integers. An integer $n$ weights $1\slash n$ kilograms. Carl wants to leave the board but can eat at most $2$ kilograms. Determine whether Carl can always find a way out when a) $N=2003.$ b) $N$ is an arbitrary odd integer.