This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 254

2021 Saudi Arabia Training Tests, 12

Let $ABC$ be a triangle with circumcenter $O$ and incenter $I$, ex-center in angle $A$ is $J$. Denote $D$ as the tangent point of $(I)$ on $BC$ and the angle bisector of angle $A$ cuts $BC$, $(O)$ respectively at $E, F$. The circle $(DEF )$ meets $(O)$ again at $T$. Prove that $AT$ passes through an intersection of $(J)$ and $(DEF )$.

2017 Romanian Master of Mathematics Shortlist, G3

Let $ABCD$ be a convex quadrilateral and let $P$ and $Q$ be variable points inside this quadrilateral so that $\angle APB=\angle CPD=\angle AQB=\angle CQD$. Prove that the lines $PQ$ obtained in this way all pass through a fixed point , or they are all parallel.

2015 Singapore Senior Math Olympiad, 1

In an acute-angled triangle $ABC$, $M$ is a point on the side $BC$, the line $AM$ meets the circumcircle $\omega$ of $ABC$ at the point $Q$ distinct from $A$. The tangent to $\omega$ at $Q$ intersects the line through $M$ perpendicular to the diameter $AK$ of $\omega$ at the point $P$. Let $L$ be the point on $\omega$ distinct from $Q$ such that $PL$ is tangent to $\omega$ at $L$. Prove that $L,M$ and $K$ are collinear.

2009 Cuba MO, 6

Let $\omega_1$ and $\omega_2$ be circles that intersect at points $A$ and $B$ and let $O_1$ and $O_2$ be their respective centers. We take $M$ in $\omega_1$ and $N$ in $\omega_2$ on the same side as $B$ with respect to segment $O_1O_2$, such that $MO_1\parallel BO_2$ and $BO_1 \parallel NO_2$. Draw the tangents to $\omega_1$ and $\omega_2$ through $M$ and $N$ respectively, which intersect at $K$. Show that $A$, $B$ and $K$ are collinear.

2023 Regional Olympiad of Mexico Southeast, 2

Let $ABC$ be an acute-angled triangle, $D$ be the foot of the altitude from $A$, the circle with diameter $AD$ intersect $AB$ at $F$ and $AC$ at $E$. Let $P$ be the orthocenter of triangle $AEF$ and $O$ be the circumcenter of $ABC$. Prove that $A, P,$ and $O$ are collinear.

2010 IMAC Arhimede, 1

$3n$ points are given ($n\ge 1$) in the plane, each $3$ of them are not collinear. Prove that there are $n$ distinct triangles with the vertices those points.

2021 2nd Memorial "Aleksandar Blazhevski-Cane", 5

Let $\triangle ABC$ be a triangle with circumcenter $O$. The perpendicular bisectors of the segments $OA,OB$ and $OC$ intersect the lines $BC,CA$ and $AB$ at $D,E$ and $F$, respectively. Prove that $D,E,F$ are collinear.

2022 Yasinsky Geometry Olympiad, 4

In the triangle $ABC$ the relationship $AB+AC = 2BC$ holds. Let $I$ and $M$ be the incenter and intersection point of the medians of triangle $ABC$ respectively, $AL$ its angle bisector, and point $P$ the orthocenter of triangle $BIC$. Prove that the points $L, M, P$ lie on a straight line. (Matvii Kurskyi)

2015 Singapore Senior Math Olympiad, 5

Let $A$ be a point on the circle $\omega$ centred at $B$ and $\Gamma$ a circle centred at $A$. For $i=1,2,3$, a chord $P_iQ_i$ of $\omega$ is tangent to $\Gamma$ at $S_i$ and another chord $P_iR_i$ of $\omega$ is perpendicular to $AB$ at $M_i$. Let $Q_iT_i$ be the other tangent from $Q_i$ to $\Gamma$ at $T_i$ and $N_i$ be the intersection of $AQ_i$ with $M_iT_i$. Prove that $N_1,N_2,N_3$ are collinear.

2013 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear. [i]Proposed by Michael Kural[/i]

2024 Alborz Mathematical Olympiad, P4

In triangle \( ABC \), let \( I \) be the \( A \)-excenter. Points \( X \) and \( Y \) are placed on line \( BC \) such that \( B \) is between \( X \) and \( C \), and \( C \) is between \( Y \) and \( B \). Moreover, \( B \) and \( C \) are the contact points of \( BC \) with the \( A \)-excircle of triangles \( BAY \) and \( AXC \), respectively. Let \( J \) be the \( A \)-excenter of triangle \( AXY \), and let \( H' \) be the reflection of the orthocenter of triangle \( ABC \) with respect to its circumcenter. Prove that \( I \), \( J \), and \( H' \) are collinear. Proposed by Ali Nazarboland

1999 All-Russian Olympiad Regional Round, 10.2

Given a circle $\omega$, a point $A$ lying inside $\omega$, and point $B$ ($B \ne A$). All possible triangles $BXY$ are considered, such that the points $X$ and $Y$ lie on $\omega$ and the chord $XY$ passes through the point $A$. Prove that the centers of the circumcircles of the triangles $BXY$ lie on the same straight line.

2019 Novosibirsk Oral Olympiad in Geometry, 4

Two squares and an isosceles triangle are positioned as shown in the figure (the up left vertex of the large square lies on the side of the triangle). Prove that points $A, B$ and $C$ are collinear. [img]https://cdn.artofproblemsolving.com/attachments/d/c/03515e40f74ced1f8243c11b3e610ef92137ac.png[/img]

Kyiv City MO Seniors 2003+ geometry, 2016.10.4

On the circle with diameter $AB$, the point $M$ was selected and fixed. Then the point ${{Q} _ {i}}$ is selected, for which the chord $M {{Q} _ {i}}$ intersects $AB$ at the point ${{K} _ {i}}$ and thus $ \angle M {{K} _ {i}} B <90 {} ^ \circ$. A chord that is perpendicular to $AB$ and passes through the point ${{K} _ {i}}$ intersects the line $B {{Q} _ {i}}$ at the point ${{P } _ {i}}$. Prove that the points ${{P} _ {i}}$ in all possible choices of the point ${{Q} _ {i}}$ lie on the same line. (Igor Nagel)

Ukraine Correspondence MO - geometry, 2016.7

The circle $\omega$ inscribed in an isosceles triangle $ABC$ ($AC = BC$) touches the side $BC$ at point $D$ .On the extensions of the segment $AB$ beyond points $A$ and $B$, respectively mark the points $K$ and $L$ so that $AK = BL$, The lines $KD$ and $LD$ intersect the circle $\omega$ for second time at points $G$ and $H$, respectively. Prove that point $A$ belongs to the line $GH$.

1994 Tournament Of Towns, (418) 6

Consider a convex quadrilateral $ABCD$. Pairs of its opposite sides are continued until they intersect: $BA$ and $CD$ at the point $P$, $BC$ and $AD$ at the point $Q$. Let $K$ be the intersection point of the exterior bisectors of the angles $A$ and $C$ of the quadrilateral, $L$ be the intersection point of the exterior bisectors of the angles $B$ and $D$ of the quadrilateral, and $M$ be the intersection point of the exterior bisectors of the angles $P$ and $Q$ (the exterior bisector of an angle $X$ is the line passing through X and perpendicular to its ordinary bisector). Prove that the points $K$, $L$ and $M$ lie on a straight line. (S Markelov)

2019 Brazil EGMO TST, 3

Let $ABC$ be a triangle and $E$ and $F$ two arbitrary points on sides $AB$ and $AC$, respectively. The circumcircle of triangle $AEF$ meets the circumcircle of triangle $ABC$ again at point $M$. The point $D$ is such that $EF$ bisects the segment $MD$ . Finally, $O$ is the circumcenter of triangle $ABC$. Prove that $D$ lies on line $BC$ if and only if $O$ lies on the circumcircle of triangle $AEF$.

1992 Romania Team Selection Test, 1

Let $S > 1$ be a real number. The Cartesian plane is partitioned into rectangles whose sides are parallel to the axes of the coordinate system. and whose vertices have integer coordinates. Prove that if the area of each triangle if at most $S$, then for any positive integer $k$ there exist $k$ vertices of these rectangles which lie on a line.

2006 Sharygin Geometry Olympiad, 9.3

Triangles $ABC$ and $A_1B_1C_1$ are similar and differently oriented. On the segment $AA_1$, a point $A'$ is taken such that $AA' / A_1A'= BC / B_1C_1$. We similarly construct $B'$ and $C'$. Prove that $A', B',C'$ lie on one straight line.

2013 Balkan MO Shortlist, G2

Let $ABCD$ be a quadrilateral, let $O$ be the intersection point of diagonals $AC$ and $BD$, and let $P$ be the intersection point of sides $AB$ and $CD$. Consider the parallelograms $AODE$ and $BOCF$. Prove that $E, F$ and $P$ are collinear.

2010 Balkan MO Shortlist, G4

Let $ABC$ be a given triangle and $\ell$ be a line that meets the lines $BC, CA$ and $AB$ in $A_1,B_1$ and $C_1$ respectively. Let $A'$ be the midpoint, of the segment connecting the projections of $A_1$ onto the lines $AB$ and $AC$. Construct, analogously the points $B'$ and $C'$. (a) Show that the points $A', B'$ and $C'$ are collinear on some line $\ell'$. (b) Show that if $\ell$ contains the circumcenter of the triangle $ABC$, then $\ell' $ contains the center of it's Euler circle.

2008 District Olympiad, 3

Let $ABCDA' B' C' D '$ be a cube , $M$ the foot of the perpendicular from $A$ on the plane $(A'CD)$, $N$ the foot of the perpendicular from $B$ on the diagonal $A'C$ and $P$ is symmetric of the point $D$ with respect to $C$. Show that the points $M, N, P$ are collinear.

2019 Ukraine Team Selection Test, 1

In a triangle $ABC$, $\angle ABC= 60^o$, point $I$ is the incenter. Let the points $P$ and $T$ on the sides $AB$ and $BC$ respectively such that $PI \parallel BC$ and $TI \parallel AB$ , and points $P_1$ and $T_1$ on the sides $AB$ and $BC$ respectively such that $AP_1 = BP$ and $CT_1 = BT$. Prove that point $I$ lies on segment $P_1T_1$. (Anton Trygub)

2014 Oral Moscow Geometry Olympiad, 4

The medians $AA_0, BB_0$, and $CC_0$ of the acute-angled triangle $ABC$ intersect at the point $M$, and heights $AA_1, BB_1$ and $CC_1$ at point $H$. Tangent to the circumscribed circle of triangle $A_1B_1C_1$ at $C_1$ intersects the line $A_0B_0$ at the point $C'$. Points $A'$ and $B'$ are defined similarly. Prove that $A', B'$ and $C'$ lie on one line perpendicular to the line $MH$.

1993 Mexico National Olympiad, 5

$OA, OB, OC$ are three chords of a circle. The circles with diameters $OA, OB$ meet again at $Z$, the circles with diameters $OB, OC$ meet again at $X$, and the circles with diameters $OC, OA$ meet again at $Y$. Show that $X, Y, Z$ are collinear.