This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2010 Saudi Arabia BMO TST, 4

In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Denote by $P, Q, R, S$ the orthogonal projections of $O$ onto $AB$ , $BC$ ,$CD$ , $DA$, respectively. Prove that $$PA \cdot AB + RC \cdot CD =\frac12 (AD^2 + BC^2)$$ if and only if $$QB \cdot BC + SD \cdot DA = \frac12(AB ^2 + CD^2)$$

1995 Poland - First Round, 8

The ray of light starts from the center of a square and reflects from its sides with the principle that the angle of reflection is equal to the angle of incidence. After some time the ray returns to the center of the square. The ray never reached the vertex and has never returned to the center of the square before. Prove that the ray reflected from the sides of the square an odd number of times.

2025 Turkey EGMO TST, 5

Tags: geometry
In triangle \( ABC \), the incircle is tangent to side \( BC \) at point \( D \), the excircle opposite vertex \( B \) is tangent to line \( AB \) at point \( X \), and the excircle opposite vertex \( C \) is tangent to line \( AC \) at point \( Y \). If \( T \) is the midpoint of segment \( [AD] \) and \( U \) is the circumcenter of triangle \( AXY \), show that \( UT \perp BC \).

2003 Alexandru Myller, 4

Let $\displaystyle ABCD$ be a a convex quadrilateral and $\displaystyle O$ be a point in its interior. Let $\displaystyle a,b,c,d,e,f$ be the areas of the triangles $\displaystyle OAB,OBC,OCD,ODA,OAC,OBD$. Prove that \[ \displaystyle \left| ac - bd \right| = ef . \]

2022 Rioplatense Mathematical Olympiad, 4

Tags: geometry , incenter
Let $ABC$ be a triangle with incenter $I$. Let $D$ be the point of intersection between the incircle and the side $BC$, the points $P$ and $Q$ are in the rays $IB$ and $IC$, respectively, such that $\angle IAP=\angle CAD$ and $\angle IAQ=\angle BAD$. Prove that $AP=AQ$.

1988 Tournament Of Towns, (195) 2

Let $N$ be the orthocentre of triangle $ABC$ (i .e. the point where the altitudes meet). Prove that the circumscribed circles of triangles $ABN, ACN$ and $BCN$ each have equal radius.

2011 Postal Coaching, 4

Consider $2011^2$ points arranged in the form of a $2011 \times 2011$ grid. What is the maximum number of points that can be chosen among them so that no four of them form the vertices of either an isosceles trapezium or a rectangle whose parallel sides are parallel to the grid lines?

2014 HMNT, 2

Tags: geometry
Let $ABC$ be a triangle with $\angle B = 90^o$. Given that there exists a point $D$ on $AC$ such that $AD = DC$ and $BD = BC$, compute the value of the ratio $\frac{AB}{BC}$ .

2012 Sharygin Geometry Olympiad, 24

Given are $n$ $(n > 2)$ points on the plane such that no three of them are collinear. In how many ways this set of points can be divided into two non-empty subsets with non-intersecting convex envelops?

2000 Baltic Way, 2

Given an isosceles triangle $ ABC$ with $ \angle A \equal{} 90^{\circ}$. Let $ M$ be the midpoint of $ AB$. The line passing through $ A$ and perpendicular to $ CM$ intersects the side $ BC$ at $ P$. Prove that $ \angle AMC \equal{} \angle BMP$.

2011 Today's Calculation Of Integral, 686

Let $L$ be a positive constant. For a point $P(t,\ 0)$ on the positive part of the $x$ axis on the coordinate plane, denote $Q(u(t),\ v(t))$ the point at which the point reach starting from $P$ proceeds by distance $L$ in counter-clockwise on the perimeter of a circle passing the point $P$ with center $O$. (1) Find $u(t),\ v(t)$. (2) For real number $a$ with $0<a<1$, find $f(a)=\int_a^1 \sqrt{\{u'(t)\}^2+\{v'(t)\}^2}\ dt$. (3) Find $\lim_{a\rightarrow +0} \frac{f(a)}{\ln a}$. [i]2011 Tokyo University entrance exam/Science, Problem 3[/i]

2024 Singapore Junior Maths Olympiad, Q2

Let $ABCD$ be a parallelogram and points $E,F$ be on its exterior. If triangles $BCF$ and $DEC$ are similar, i.e. $\triangle BCF \sim \triangle DEC$, prove that triangle $AEF$ is similar to these two triangles.

2022 Adygea Teachers' Geometry Olympiad, 3

The incircle of triangle $ABC$ touches its sides at points $A'$, $B'$, $C'$. $I$ is its center. Straight line $B'I$ intersects segment $A'C'$ at point $P$. Prove that straight line $BP$ passes through the midpoint of $AC$.

2015 Bosnia And Herzegovina - Regional Olympiad, 3

Let $ABC$ be a triangle with incenter $I$. Line $AI$ intersects circumcircle of $ABC$ in points $A$ and $D$, $(A \neq D)$. Incircle of $ABC$ touches side $BC$ in point $E$ . Line $DE$ intersects circumcircle of $ABC$ in points $D$ and $F$, $(D \neq F)$. Prove that $\angle AFI = 90^{\circ}$

2018 Harvard-MIT Mathematics Tournament, 5

Tags: geometry
In the quadrilateral $MARE$ inscribed in a unit circle $\omega,$ $AM$ is a diameter of $\omega,$ and $E$ lies on the angle bisector of $\angle RAM.$ Given that triangles $RAM$ and $REM$ have the same area, find the area of quadrilateral $MARE.$

2010 Saint Petersburg Mathematical Olympiad, 5

$SABCD$ is quadrangular pyramid. Lateral faces are acute triangles with orthocenters lying in one plane. $ABCD$ is base of pyramid and $AC$ and $BD$ intersects at $P$, where $SP$ is height of pyramid. Prove that $AC \perp BD$

1952 AMC 12/AHSME, 27

The ratio of the perimeter of an equilateral triangle having an altitude equal to the radius of a circle, to the perimeter of an equilateral triangle inscribed in the circle is: $ \textbf{(A)}\ 1: 2 \qquad\textbf{(B)}\ 1: 3 \qquad\textbf{(C)}\ 1: \sqrt {3} \qquad\textbf{(D)}\ \sqrt {3}: 2 \qquad\textbf{(E)}\ 2: 3$

2018 Morocco TST., 3

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

1999 Swedish Mathematical Competition, 2

Circle $C$ center $O$ touches externally circle $C'$ center $O'$. A line touches $C$ at $A$ and $C'$ at $B$. $P$ is the midpoint of $AB$. Show that $\angle OPO' = 90^o$.

2013 Stanford Mathematics Tournament, 17

Tags: geometry
An isosceles right triangle is inscribed in a circle of radius 5, thereby separating the circle into four regions. Compute the sum of the areas of the two smallest regions.

2013 Harvard-MIT Mathematics Tournament, 8

Tags: geometry
Let $ABCD$ be a convex quadrilateral. Extend line $CD$ past $D$ to meet line $AB$ at $P$ and extend line $CB$ past $B$ to meet line $AD$ at $Q$. Suppose that line $AC$ bisects $\angle BAD$. If $AD = \frac{7}{4}$, $AP = \frac{21}{2}$, and $AB = \frac{14}{11}$ , compute $AQ$.

Ukrainian TYM Qualifying - geometry, 2013.9

Given a triangle $PQR$, the inscribed circle $\omega$ which touches the sides $QR, RP$ and $PQ$ at points $A, B$ and $C$, respectively, and $AB^2 + AC^2 = 2BC^2$. Prove that the point of intersection of the segments $PA, QB$ and $RC$, the center of the circle $\omega$, the point of intersection of the medians of the triangle $ABC$, the point $A$ and the midpoints of the segments $AC$ and $AB$ lie on one circle.

Kyiv City MO 1984-93 - geometry, 1989.8.5

The student drew a right triangle $ABC$ on the board with a right angle at the vertex $B$ and inscribed in it an equilateral triangle $KMP$ such that the points $K, M, P$ lie on the sides $AB, BC, AC$, respectively, and $KM \parallel AC$. Then the picture was erased, leaving only points $A, P$ and $C$. Restore erased points and lines.

2024 CIIM, 4

Given the points $O = (0, 0)$ and $A = (2024, -2024)$ in the plane. For any positive integer $n$, Damian draws all the points with integer coordinates $B_{i,j} = (i, j)$ with $0 \leq i, j \leq n$ and calculates the area of each triangle $OAB_{i,j}$. Let $S(n)$ denote the sum of the $(n+1)^2$ areas calculated above. Find the following limit: \[ \lim_{n \to \infty} \frac{S(n)}{n^3}. \]

2004 Croatia National Olympiad, Problem 1

Tags: geometry
Parts of a pentagon have areas $x,y,z$ as shown in the picture. Given the area $x$, find the areas $y$ and $z$ and the area of the entire pentagon. [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvOS9mLzM5NjNjNDcwY2ZmMzgzY2QwYWM0YzI1NmYzOWU2MWY1NTczZmYxLnBuZw==&rn=U2NyZWVuIFNob3QgMjAyMS0wNC0wOCBhdCA0LjMwLjU1IFBNLnBuZw[/img]