This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2005 Canada National Olympiad, 3

Let $S$ be a set of $n\ge 3$ points in the interior of a circle. $a)$ Show that there are three distinct points $a,b,c\in S$ and three distinct points $A,B,C$ on the circle such that $a$ is (strictly) closer to $A$ than any other point in $S$, $b$ is closer to $B$ than any other point in $S$ and $c$ is closer to $C$ than any other point in $S$. $b)$ Show that for no value of $n$ can four such points in $S$ (and corresponding points on the circle) be guaranteed.

1992 IMO Longlists, 17

In the plane let $\,C\,$ be a circle, $\,L\,$ a line tangent to the circle $\,C,\,$ and $\,M\,$ a point on $\,L$. Find the locus of all points $\,P\,$ with the following property: there exists two points $\,Q,R\,$ on $\,L\,$ such that $\,M\,$ is the midpoint of $\,QR\,$ and $\,C\,$ is the inscribed circle of triangle $\,PQR$.

1999 Kazakhstan National Olympiad, 3

The circle inscribed in the triangle $ ABC $ , with center $O$, touches the sides $ AB $ and $ BC $ at the points $ C_1 $ and $ A_1 $, respectively. The lines $ CO $ and $ AO $ intersect the line $ C_1A_1 $ at the points $ K $ and $ L $. $ M $ is the midpoint of $ AC $ and $ \angle ABC = 60^\circ $. Prove that $ KLM $ is a regular triangle.

2011 NIMO Problems, 1

A point $(x,y)$ in the first quadrant lies on a line with intercepts $(a,0)$ and $(0,b)$, with $a,b > 0$. Rectangle $M$ has vertices $(0,0)$, $(x,0)$, $(x,y)$, and $(0,y)$, while rectangle $N$ has vertices $(x,y)$, $(x,b)$, $(a,b)$, and $(a,y)$. What is the ratio of the area of $M$ to that of $N$? [i]Proposed by Eugene Chen[/i]

1913 Eotvos Mathematical Competition, 2

Let $O$ and $O'$ designate two dìagonally opposite vertices of a cube. Bisect those edges of the cube that contain neither of the points $O$ and $O'$. Prove that these midpoints of edges lie in a plane and form the vertices of a regular hexagon

2020 Junior Balkаn MO, 2

Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$ and let $E$ be the foot of the perpendicular from $A$ to $BC$. Let $Z \ne A$ be a point on the line $AB$ with $AB = BZ$. Let $(c)$ be the circumcircle of the triangle $\triangle AEZ$. Let $D$ be the second point of intersection of $(c)$ with $ZC$ and let $F$ be the antidiametric point of $D$ with respect to $(c)$. Let $P$ be the point of intersection of the lines $FE$ and $CZ$. If the tangent to $(c)$ at $Z$ meets $PA$ at $T$, prove that the points $T$, $E$, $B$, $Z$ are concyclic. Proposed by [i]Theoklitos Parayiou, Cyprus[/i]

1982 Tournament Of Towns, (030) 4

(a) $K_1,K_2,..., K_n$ are the feet of the perpendiculars from an arbitrary point $M$ inside a given regular $n$-gon to its sides (or sides produced). Prove that the sum $\overrightarrow{MK_1} + \overrightarrow{MK_2} + ... + \overrightarrow{MK_n}$ equals $\frac{n}{2}\overrightarrow{MO}$, where $O$ is the centre of the $n$-gon. (b) Prove that the sum of the vectors whose origin is an arbitrary point $M$ inside a given regular tetrahedron and whose endpoints are the feet of the perpendiculars from $M$ to the faces of the tetrahedron equals $\frac43 \overrightarrow{MO}$, where $O$ is the centre of the tetrahedron. (VV Prasolov, Moscow)

2011 Lusophon Mathematical Olympiad, 2

Consider two circles, tangent at $T$, both inscribed in a rectangle of height $2$ and width $4$. A point $E$ moves counterclockwise around the circle on the left, and a point $D$ moves clockwise around the circle on the right. $E$ and $D$ start moving at the same time; $E$ starts at $T$, and $D$ starts at $A$, where $A$ is the point where the circle on the right intersects the top side of the rectangle. Both points move with the same speed. Find the locus of the midpoints of the segments joining $E$ and $D$.

2015 AMC 10, 10

How many rearrangements of $abcd$ are there in which no two adjacent letters are also adjacent letters in the alphabet? For example, no such rearrangements could include either $ab$ or $ba$. $ \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4 $

2014 Denmark MO - Mohr Contest, 3

The points $C$ and $D$ lie on a halfline from the midpoint $M$ of a segment $AB$, so that $|AC| = |BD|$. Prove that the angles $u = \angle ACM$ and $v = \angle BDM$ are equal. [img]https://1.bp.blogspot.com/-tQEJ1VBCa8U/XzT7IhwlZHI/AAAAAAAAMVI/xpRdlj5Rl64VUt_tCRsQ1UxIsv_SGrMlACLcBGAsYHQ/s0/2014%2BMohr%2Bp3.png[/img]

2023-24 IOQM India, 5

In a triangle $A B C$, let $E$ be the midpoint of $A C$ and $F$ be the midpoint of $A B$. The medians $B E$ and $C F$ intersect at $G$. Let $Y$ and $Z$ be the midpoints of $B E$ and $C F$ respectively. If the area of triangle $A B C$ is 480 , find the area of triangle $G Y Z$.

2002 Swedish Mathematical Competition, 6

A tetrahedron has five edges of length $3$ and circumradius $2$. What is the length of the sixth edge?

2022 Harvard-MIT Mathematics Tournament, 6

Tags: geometry
Let $ABCD$ be a rectangle inscribed in circle $\Gamma$, and let $P$ be a point on minor arc $AB$ of $\Gamma$. Suppose that $P A \cdot P B = 2$, $P C \cdot P D = 18$, and $P B \cdot P C = 9$. The area of rectangle $ABCD$ can be expressed as $\frac{a\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers and $b$ is a squarefree positive integer. Compute $100a + 10b + c$.

2012 Serbia Team Selection Test, 3

Let $P$ and $Q$ be points inside triangle $ABC$ satisfying $\angle PAC=\angle QAB$ and $\angle PBC=\angle QBA$. a) Prove that feet of perpendiculars from $P$ and $Q$ on the sides of triangle $ABC$ are concyclic. b) Let $D$ and $E$ be feet of perpendiculars from $P$ on the lines $BC$ and $AC$ and $F$ foot of perpendicular from $Q$ on $AB$. Let $M$ be intersection point of $DE$ and $AB$. Prove that $MP\bot CF$.

Swiss NMO - geometry, 2005.8

Let $ABC$ be an acute-angled triangle. $M ,N$ are any two points on the sides $AB , AC$ respectively. The circles with the diameters $BN$ and $CM$ intersect at points $P$ and $Q$. Show that the points $P, Q$ and the orthocenter of the triangle $ABC$ lie on a straight line.

2009 Ukraine National Mathematical Olympiad, 3

In triangle $ABC$ points $M, N$ are midpoints of $BC, CA$ respectively. Point $P$ is inside $ABC$ such that $\angle BAP = \angle PCA = \angle MAC .$ Prove that $\angle PNA = \angle AMB .$

2019 Philippine MO, 4

In acute triangle $ABC $with $\angle BAC > \angle BCA$, let $P$ be the point on side $BC$ such that $\angle PAB = \angle BCA$. The circumcircle of triangle $AP B$ meets side $AC$ again at $Q$. Point $D$ lies on segment $AP$ such that $\angle QDC = \angle CAP$. Point $E$ lies on line $BD$ such that $CE = CD$. The circumcircle of triangle $CQE$ meets segment $CD$ again at $F$, and line $QF$ meets side $BC$ at $G$. Show that $B, D, F$, and $G$ are concyclic

1998 Tournament Of Towns, 3

Segment $AB$ intersects two equal circles, is parallel to the line joining their centres, and all the points of intersection of the segment and the circles lie between $A$ and $B$. From the point $A$ tangents to the circle nearest to $A$ are drawn, and from the point $B$ tangents to the circle nearest to $B$ are also drawn. It turns out that the quadrilateral formed by the four tangents extended contains both circles. Prove that a circle can be drawn so that it touches all four sides of the quadrilateral. (P Kozhevnikov)

1962 Vietnam National Olympiad, 4

Let be given a tetrahedron $ ABCD$ such that triangle $ BCD$ equilateral and $ AB \equal{} AC \equal{} AD$. The height is $ h$ and the angle between two planes $ ABC$ and $ BCD$ is $ \alpha$. The point $ X$ is taken on $ AB$ such that the plane $ XCD$ is perpendicular to $ AB$. Find the volume of the tetrahedron $ XBCD$.

2002 AMC 12/AHSME, 24

A convex quadrilateral $ ABCD$ with area $ 2002$ contains a point $ P$ in its interior such that $ PA \equal{} 24$, $ PB \equal{} 32$, $ PC \equal{} 28$, and $ PD \equal{} 45$. FInd the perimeter of $ ABCD$. $ \textbf{(A)}\ 4\sqrt {2002}\qquad \textbf{(B)}\ 2\sqrt {8465}\qquad \textbf{(C)}\ 2\left(48 \plus{} \sqrt {2002}\right)$ $ \textbf{(D)}\ 2\sqrt {8633}\qquad \textbf{(E)}\ 4\left(36 \plus{} \sqrt {113}\right)$

2011 Balkan MO, 4

Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.

2018 India PRMO, 8

Tags: geometry , chord , angle
Let $AB$ be a chord of a circle with centre $O$. Let $C$ be a point on the circle such that $\angle ABC =30^o$ and $O$ lies inside the triangle $ABC$. Let $D$ be a point on $AB$ such that $\angle DCO = \angle OCB = 20^o$. Find the measure of $\angle CDO$ in degrees.

2000 Iran MO (2nd round), 2

In a tetrahedron we know that sum of angles of all vertices is $180^\circ.$ (e.g. for vertex $A$, we have $\angle BAC + \angle CAD + \angle DAB=180^\circ.$) Prove that faces of this tetrahedron are four congruent triangles.

MMPC Part II 1958 - 95, 1970

[b]p1.[/b] Show that the $n \times n$ determinant $$\begin{vmatrix} 1+x & 1 & 1 & . & . & . & 1 \\ 1 & 1+x & 1 & . & . & . & 1 \\ . & . & . & . & . & . & . \\ . & . & . & . & . & . & . \\ 1 & 1 & . & . & . & . & 1+x \\ \end{vmatrix}$$ has the value zero when $x = -n$ [b]p2.[/b] Let $c > a \ge b$ be the lengths of the sides of an obtuse triangle. Prove that $c^n = a^n + b^n$ for no positive integer $n$. [b]p3.[/b] Suppose that $p_1 = p_2^2+ p_3^2 + p_4^2$ , where $p_1$, $p_2$, $p_3$, and $p_4$ are primes. Prove that at least one of $p_2$, $p_3$, $p_4$ is equal to $3$. [b]p4.[/b] Suppose $X$ and $Y$ are points on tJhe boundary of the triangular region $ABC$ such that the segment $XY$ divides the region into two parts of equal area. If $XY$ is the shortest such segment and $AB = 5$, $BC = 4$, $AC = 3$ calculate the length of $XY$. Hint: Of all triangles having the same area and same vertex angle the one with the shortest base is isosceles. Clearly justify all claims. [b]p5.[/b] Find all solutions of the following system of simultaneous equations $$x + y + z = 7\,\, , \,\, x^2 + y^2 + z^2 = 31\,\,, \,\,x^3 + y^3 + z^3 = 154$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Sharygin Geometry Olympiad, P13

Let $AH_1, BH_2$ and $CH_3$ be the altitudes of a triangle $ABC$. Point $M$ is the midpoint of $H_2H_3$. Line $AM$ meets $H_2H_1$ at point $K$. Prove that $K$ lies on the medial line of $ABC$ parallel to $AC$.