This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2018 Thailand Mathematical Olympiad, 1

In $\vartriangle ABC$, the incircle is tangent to the sides $BC, CA, AB$ at $D, E, F$ respectively. Let $P$ and $Q$ be the midpoints of $DF$ and $DE$ respectively. Lines $P C$ and $DE$ intersect at $R$, and lines $BQ$ and$ DF$ intersect at $S$. Prove that a) Points $B, C, P, Q$ lie on a circle. b) Points $P, Q, R, S$ lie on a circle.

2004 Switzerland Team Selection Test, 5

A brick has the shape of a cube of size $2$ with one corner unit cube removed. Given a cube of side $2^{n}$ divided into unit cubes from which an arbitrary unit cube is removed, show that the remaining figure can be built using the described bricks.

1987 Mexico National Olympiad, 8

(a) Three lines $l,m,n$ in space pass through point $S$. A plane perpendicular to $m$ intersects $l,m,n $ at $A,B,C$ respectively. Suppose that $\angle ASB = \angle BSC = 45^o$ and $\angle ABC = 90^o$. Compute $\angle ASC$. (b) Furthermore, if a plane perpendicular to $l$ intersects $l,m,n$ at $P,Q,R$ respectively and $SP = 1$, find the sides of triangle $PQR$.

2017 Iranian Geometry Olympiad, 1

Tags: geometry
Let $ABC$ be an acute-angled triangle with $A=60^{\circ}$. Let $E,F$ be the feet of altitudes through $B,C$ respectively. Prove that $CE-BF=\tfrac{3}{2}(AC-AB)$ [i]Proposed by Fatemeh Sajadi[/i]

1991 IberoAmerican, 2

A square is divided in four parts by two perpendicular lines, in such a way that three of these parts have areas equal to 1. Show that the square has area equal to 4.

2023 CMIMC Geometry, 6

Tags: geometry
Let $ABCD$ be a regular tetrahedron. Suppose points $X$, $Y$, and $Z$ lie on rays $AB$, $AC$, and $AD$ respectively such that $XY=YZ=7$ and $XZ=5$. Moreover, the lengths $AX$, $AY$, and $AZ$ are all distinct. Find the volume of tetrahedron $AXYZ$. [i]Proposed by Connor Gordon[/i]

2018 Dutch Mathematical Olympiad, 4

In triangle $ABC, \angle A$ is smaller than $\angle C$. Point $D$ lies on the (extended) line $BC$ (with $B$ between $C$ and $D$) such that $|BD| = |AB|$. Point $E$ lies on the bisector of $\angle ABC$ such that $\angle BAE = \angle ACB$. Line segment $BE$ intersects line segment $AC$ in point $F$. Point $G$ lies on line segment $AD$ such that $EG$ and $BC$ are parallel. Prove that $|AG| =|BF|$. [asy] unitsize (1.5 cm); real angleindegrees(pair A, pair B, pair C) { real a, b, c; a = abs(B - C); b = abs(C - A); c = abs(A - B); return(aCos((a^2 + c^2 - b^2)/(2*a*c))); }; pair A, B, C, D, E, F, G; B = (0,0); A = 2*dir(190); D = 2*dir(310); C = 1.5*dir(310 - 180); E = extension(B, incenter(A,B,C), A, rotate(angleindegrees(A,C,B),A)*(B)); F = extension(B,E,A,C); G = extension(E, E + D - B, A, D); filldraw(anglemark(A,C,B,8),gray(0.8)); filldraw(anglemark(B,A,E,8),gray(0.8)); draw(C--A--B); draw(E--A--D); draw(interp(C,D,-0.1)--interp(C,D,1.1)); draw(interp(E,B,-0.2)--interp(E,B,1.2)); draw(E--G); dot("$A$", A, SW); dot("$B$", B, NE); dot("$C$", C, NE); dot("$D$", D, NE); dot("$E$", E, N); dot("$F$", F, N); dot("$G$", G, SW); [/asy]

2008 Balkan MO Shortlist, C3

Let $ n$ be a positive integer. Consider a rectangle $ (90n\plus{}1)\times(90n\plus{}5)$ consisting of unit squares. Let $ S$ be the set of the vertices of these squares. Prove that the number of distinct lines passing through at least two points of $ S$ is divisible by $ 4$.

1996 Estonia Team Selection Test, 2

Let $a,b,c$ be the sides of a triangle, $\alpha ,\beta ,\gamma$ the corresponding angles and $r$ the inradius. Prove that $$a\cdot sin\alpha+b\cdot sin\beta+c\cdot sin\gamma\geq 9r$$

Kvant 2023, M2777

A convex polygon $\mathcal{P}$ with a center of symmetry $O{}$ is drawn in the plane. Prove that it is possible to place a rhombus in $\mathcal{P}$ whose image following a homothety of factor two centered at $O$ contains $\mathcal{P}$. [i]Proposed by I. Bogdanov, S. Gerdzhikov and N. Nikolov[/i]

2021 May Olympiad, 3

Tags: geometry
Let $ABC$ be a triangle and $D$ is a point inside of the triangle, such that $\angle DBC=60^{\circ}$ and $\angle DCB=\angle DAB=30^{\circ}$. Let $M$ and $N$ be the midpoints of $AC$ and $BC$, respectively. Prove that $\angle DMN=90^{\circ}$.

2000 Harvard-MIT Mathematics Tournament, 3

Tags: geometry
Find $PB$, given that $PA = 15$, $PC = 20$, $PD = 7$, and $ABCD$ is a square. [img]https://cdn.artofproblemsolving.com/attachments/7/a/cc5bf99986fea1cd75e57fe1117a4d04d3eae3.png[/img]

OIFMAT III 2013, 5

In an acute triangle $ ABC $ with circumcircle $ \Omega $ and circumcenter $ O $, the circle $ \Gamma $ is drawn, passing through the points $ A $, $ O $ and $ C $ together with its diameter $ OQ $, then the points $ M $ and $ N $ are chosen on the lines $ AQ $ and $ AC $, respectively, in such a way that the quadrilateral $ AMBN $ is a parallelogram. Prove that the point of intersection of the lines $ MN $ and $ BQ $ lies on the circle $ \Gamma $.

2007 CentroAmerican, 3

Consider a circle $S$, and a point $P$ outside it. The tangent lines from $P$ meet $S$ at $A$ and $B$, respectively. Let $M$ be the midpoint of $AB$. The perpendicular bisector of $AM$ meets $S$ in a point $C$ lying inside the triangle $ABP$. $AC$ intersects $PM$ at $G$, and $PM$ meets $S$ in a point $D$ lying outside the triangle $ABP$. If $BD$ is parallel to $AC$, show that $G$ is the centroid of the triangle $ABP$. [i]Arnoldo Aguilar (El Salvador)[/i]

2015 AMC 10, 25

Let $S$ be a square of side length $1$. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\tfrac12$ is $\tfrac{a-b\pi}c$, where $a$, $b$, and $c$ are positive integers and $\gcd(a,b,c)=1$. What is $a+b+c$? $\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

2016 Canadian Mathematical Olympiad Qualification, 2

Let $P = (7, 1)$ and let $O = (0, 0)$. (a) If $S$ is a point on the line $y = x$ and $T$ is a point on the horizontal $x$-axis so that $P$ is on the line segment $ST$, determine the minimum possible area of triangle $OST$. (b) If $U$ is a point on the line $y = x$ and $V$ is a point on the horizontal $x$-axis so that $P$ is on the line segment $UV$, determine the minimum possible perimeter of triangle $OUV$.

2013 Harvard-MIT Mathematics Tournament, 31

Let $ABCD$ be a quadrilateral inscribed in a unit circle with center $O$. Suppose that $\angle AOB = \angle COD = 135^\circ$, $BC=1$. Let $B^\prime$ and $C^\prime$ be the reflections of $A$ across $BO$ and $CO$ respectively. Let $H_1$ and $H_2$ be the orthocenters of $AB^\prime C^\prime$ and $BCD$, respectively. If $M$ is the midpoint of $OH_1$, and $O^\prime$ is the reflection of $O$ about the midpoint of $MH_2$, compute $OO^\prime$.

2014 Tournament of Towns., 3

Tags: area , geometry , square
A square table is covered with a square cloth (may be of a different size) without folds and wrinkles. All corners of the table are left uncovered and all four hanging parts are triangular. Given that two adjacent hanging parts are equal prove that two other parts are also equal.

2019 Sharygin Geometry Olympiad, 14

Tags: geometry
Let the side $AC$ of triangle $ABC$ touch the incircle and the corresponding excircle at points $K$ and $L$ respectively. Let $P$ be the projection of the incenter onto the perpendicular bisector of $AC$. It is known that the tangents to the circumcircle of triangle $BKL$ at $K$ and $L$ meet on the circumcircle of $ABC$. Prove that the lines $AB$ and $BC$ touch the circumcircle of triangle $PKL$.

Kyiv City MO Juniors Round2 2010+ geometry, 2017.9.1

Find the angles of the triangle $ABC$, if we know that its center $O$ of the circumscribed circle and the center $I_A$ of the exscribed circle (tangent to $BC$) are symmetric wrt $BC$. (Bogdan Rublev)

1963 Bulgaria National Olympiad, Problem 3

In the trapezium $ABCD$, a point $M$ is chosen on the non-base segment $AB$. Through the points $M,A,D$ and $M,B,C$ are drawn circles $k_1$ and $k_2$ with centers $O_1$ and $O_2$. Prove that: (a) the second intersection point $N$ of $k_1$ and $k_2$ lies on the other non-base segment $CD$ or on its continuation; (b) the length of the line $O_1O_2$ doesn’t depend on the location of $M$ on $AB$; (c) the triangles $O_1MO_2$ and $DMC$ are similar. Find such a position of $M$ on $AB$ that makes $k_1$ and $k_2$ have the same radius.

2017 Oral Moscow Geometry Olympiad, 3

Points $M$ and $N$ are the midpoints of sides $AB$ and $CD$, respectively of quadrilateral $ABCD$. It is known that $BC // AD$ and $AN = CM$. Is it true that $ABCD$ is parallelogram?

2006 Thailand Mathematical Olympiad, 1

Tags: geometry , angle
Let $O$ be the circumcenter of a triangle $\vartriangle ABC$. It is given that $\angle ABC = 70^o$, $\angle ACB =50^o$. Let the angle bisector of $\angle BAC$ intersect the circumcircle of $\vartriangle ABC$ again at $D$. Compute $\angle ADO$.

1996 Poland - Second Round, 6

Prove that every interior point of a parallelepiped with edges $a,b,c$ is on the distance at most $\frac12 \sqrt{a^2 +b^2 +c^2}$ from some vertex of the parallelepiped.

2017 Tuymaada Olympiad, 8

Two points $A$ and $B$ are given in the plane. A point $X$ is called their [i]preposterous midpoint[/i] if there is a Cartesian coordinate system in the plane such that the coordinates of $A$ and $B$ in this system are non-negative, the abscissa of $X$ is the geometric mean of the abscissae of $A$ and $B$, and the ordinate of $X$ is the geometric mean of the ordinates of $A$ and $B$. Find the locus of all the [i]preposterous midpoints[/i] of $A$ and $B$. (K. Tyschu)