Found problems: 25757
1993 Vietnam National Olympiad, 2
$ABCD$ is a quadrilateral such that $AB$ is not parallel to $CD$, and $BC$ is not parallel to $AD$. Variable points $P, Q, R, S$ are taken on $AB, BC, CD, DA$ respectively so that $PQRS$ is a parallelogram. Find the locus of its center.
1950 Poland - Second Round, 5
Given two concentric circles and a point $A$. Through point $A$, draw a secant such that its segment contained by the larger circle is divided by the smaller circle into three equal parts.
2013 Sharygin Geometry Olympiad, 5
Points $E$ and $F$ lie on the sides $AB$ and $AC$ of a triangle $ABC$. Lines $EF$ and $BC$ meet at point $S$. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. The line passing through $A$ and parallel to $MN$ meets $BC$ at point $K$. Prove that $\frac{BK}{CK}=\frac{FS}{ES}$ .
.
1988 IMO, 1
Consider 2 concentric circle radii $ R$ and $ r$ ($ R > r$) with centre $ O.$ Fix $ P$ on the small circle and consider the variable chord $ PA$ of the small circle. Points $ B$ and $ C$ lie on the large circle; $ B,P,C$ are collinear and $ BC$ is perpendicular to $ AP.$
[b]i.)[/b] For which values of $ \angle OPA$ is the sum $ BC^2 \plus{} CA^2 \plus{} AB^2$ extremal?
[b]ii.)[/b] What are the possible positions of the midpoints $ U$ of $ BA$ and $ V$ of $ AC$ as $ \angle OPA$ varies?
2019 Brazil Team Selection Test, 2
Let $ABC$ be a triangle, and $A_1$, $B_1$, $C_1$ points on the sides $BC$, $CA$, $AB$, respectively, such that the triangle $A_1B_1C_1$ is equilateral. Let $I_1$ and $\omega_1$ be the incenter and the incircle of $AB_1C_1$. Define $I_2$, $\omega_2$ and $I_3$, $\omega_3$ similarly, with respect to the triangles $BA_1C_1$ and $CA_1B_1$, respectively. Let $l_1 \neq BC$ be the external tangent line to $\omega_2$ and $\omega_3$. Define $l_2$ and $l_3$ similarly, with respect to the pairs $\omega_1$, $\omega_3$ and $\omega_1$, $\omega_2$.
Knowing that $A_1I_2 = A_1I_3$, show that the lines $l_1$, $l_2$, $l_3$ are concurrent.
1971 Spain Mathematical Olympiad, 4
Prove that in every triangle with sides $a, b, c$ and opposite angles $A, B, C$, is fulfilled (measuring the angles in radians) $$\frac{a A+bB+cC}{a+b+c} \ge \frac{\pi}{3}$$
Hint: Use $a \ge b \ge c \Rightarrow A \ge B \ge C$.
2021 Sharygin Geometry Olympiad, 13
In triangle $ABC$ with circumcircle $\Omega$ and incenter $I$, point $M$ bisects arc $BAC$ and line $\overline{AI}$ meets $\Omega$ at $N\ne A$. The excircle opposite to $A$ touches $\overline{BC}$ at point $E$. Point $Q\ne I$ on the circumcircle of $\triangle MIN$ is such that $\overline{QI}\parallel\overline{BC}$. Prove that the lines $\overline{AE}$ and $\overline{QN}$ meet on $\Omega$.
1996 Estonia Team Selection Test, 2
Let $H$ be the orthocenter of an obtuse triangle $ABC$ and $A_1B_1C_1$ arbitrary points on the sides $BC,AC,AB$ respectively.Prove that the tangents drawn from $H$ to the circles with diametrs $AA_1,BB_1,CC_1$ are equal.
2019 BmMT, Team Round
[b]p1.[/b] Given that $7 \times 22 \times 13 = 2002$, compute $14 \times 11 \times 39$.
[b]p2.[/b] Ariel the frog is on the top left square of a $8 \times 10$ grid of squares. Ariel can jump from any square on the grid to any adjacent square, including diagonally adjacent squares. What is the minimum number of jumps required so that Ariel reaches the bottom right corner?
[b]p3.[/b] The distance between two floors in a building is the vertical distance from the bottom of one floor to the bottom of the other. In Evans hall, the distance from floor $7$ to floor $5$ is $30$ meters. There are $12$ floors on Evans hall and the distance between any two consecutive floors is the same. What is the distance, in meters, from the first floor of Evans hall to the $12$th floor of Evans hall?
[b]p4.[/b] A circle of nonzero radius $ r$ has a circumference numerically equal to $\frac13$ of its area. What is its area?
[b]p5.[/b] As an afternoon activity, Emilia will either play exactly two of four games (TwoWeeks, DigBuild, BelowSaga, and FlameSymbol) or work on homework for exactly one of three classes (CS61A, Math 1B, Anthro 3AC). How many choices of afternoon activities does Emilia have?
[b]p6.[/b] Matthew wants to buy merchandise of his favorite show, Fortune Concave Decagon. He wants to buy figurines of the characters in the show, but he only has $30$ dollars to spend. If he can buy $2$ figurines for $4$ dollars and $5$ figurines for $8$ dollars, what is the maximum number of figurines that Matthew can buy?
[b]p7.[/b] When Dylan is one mile from his house, a robber steals his wallet and starts to ride his motorcycle in the direction opposite from Dylan’s house at $40$ miles per hour. Dylan dashes home at $10$ miles per hour and, upon reaching his house, begins driving his car at $60$ miles per hour in the direction of the robber’s motorcycle. How long, starting from when the robber steals the wallet, does it take for Dylan to catch the robber? Express your answer in minutes.
[b]p8.[/b] Deepak the Dog is tied with a leash of $7$ meters to a corner of his $4$ meter by $6$ meter rectangular shed such that Deepak is outside the shed. Deepak cannot go inside the shed, and the leash cannot go through the shed. Compute the area of the region that Deepak can travel to.
[img]https://cdn.artofproblemsolving.com/attachments/f/8/1b9563776325e4e200c3a6d31886f4020b63fa.png[/img]
[b]p9.[/b] The quadratic equation $a^2x^2 + 2ax -3 = 0$ has two solutions for x that differ by $a$, where $a > 0$. What is the value of $a$?
[b]p10.[/b] Find the number of ways to color a $2 \times 2$ grid of squares with $4$ colors such that no two (nondiagonally) adjacent squares have the same color. Each square should be colored entirely with one color. Colorings that are rotations or reflections of each other should be considered different.
[b]p11[/b]. Given that $\frac{1}{y^2+5} - \frac{3}{y^4-39} = 0$, and $y \ge 0$, compute $y$.
[b]p12.[/b] Right triangle $ABC$ has $AB = 5$, $BC = 12$, and $CA = 13$. Point $D$ lies on the angle bisector of $\angle BAC$ such that $CD$ is parallel to $AB$. Compute the length of $BD$.
[img]https://cdn.artofproblemsolving.com/attachments/c/3/d5cddb0e8ac43c35ddfc94b2a74b8d022292f2.png[/img]
[b]p13.[/b] Let $x$ and $y$ be real numbers such that $xy = 4$ and $x^2y + xy^2 = 25$. Find the value of $x^3y +x^2y^2 + xy^3$.
[b]p14.[/b] Shivani is planning a road trip in a car with special new tires made of solid rubber. Her tires are cylinders that are $6$ inches in width and have diameter $26$ inches, but need to be replaced when the diameter is less than $22$ inches. The tire manufacturer says that $0.12\pi$ cubic inches will wear away with every single rotation. Assuming that the tire manufacturer is correct about the wear rate of their tires, and that the tire maintains its cylindrical shape and width (losing volume by reducing radius), how many revolutions can each tire make before she needs to replace it?
[b]p15.[/b] What’s the maximum number of circles of radius $4$ that fit into a $24 \times 15$ rectangle without overlap?
[b]p16.[/b] Let $a_i$ for $1 \le i \le 10$ be a finite sequence of $10$ integers such that for all odd $i$, $a_i = 1$ or $-1$, and for all even $i$, $a_i = 1$, $-1$, or $0$. How many sequences a_i exist such that $a_1+a_2+a_3+...+a_{10} = 0$?
[b]p17.[/b] Let $\vartriangle ABC$ be a right triangle with $\angle B = 90^o$ such that $AB$ and $BC$ have integer side lengths. Squares $ABDE$ and $BCFG$ lie outside $\vartriangle ABC$. If the area of $\vartriangle ABC$ is $12$, and the area of quadrilateral $DEFG$ is $38$, compute the perimeter of $\vartriangle ABC$.
[img]https://cdn.artofproblemsolving.com/attachments/b/6/980d3ba7d0b43507856e581476e8ad91886656.png[/img]
[b]p18.[/b] What is the smallest positive integer $x$ such that there exists an integer $y$ with $\sqrt{x} +\sqrt{y} = \sqrt{1025}$ ?
[b]p19. [/b]Let $a =\underbrace{19191919...1919}_{19\,\, is\,\,repeated\,\, 3838\,\, times}$. What is the remainder when $a$ is divided by $13$?
[b]p20.[/b] James is watching a movie at the cinema. The screen is on a wall and is $5$ meters tall with the bottom edge of the screen $1.5$ meters above the floor. The floor is sloped downwards at $15$ degrees towards the screen. James wants to find a seat which maximizes his vertical viewing angle (depicted below as $\theta$ in a two dimensional cross section), which is the angle subtended by the top and bottom edges of the screen. How far back from the screen in meters (measured along the floor) should he sit in order to maximize his vertical viewing angle?
[img]https://cdn.artofproblemsolving.com/attachments/1/5/1555fb2432ee4fe4903accc3b74ea7215bc007.png[/img]
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 South East Mathematical Olympiad, 2
$ABCD$ is a parallelogram with $\angle BAD \neq 90$. Circle centered at $A$ radius $BA$ denoted as $\omega _1$ intersects the extended side of $AB,CB$ at points $E,F$ respectively. Suppose the circle centered at $D$ with radius $DA$, denoted as $\omega _2$, intersects $AD,CD$ at points $M,N$ respectively. Suppose $EN,FM$ intersects at $G$, $AG$ intersects $ME$ at point $T$. $MF$ intersects $\omega _1$ at $Q \neq F$, and $EN$ intersects $\omega _2$ at $P \neq N$. Prove that $G,P,T,Q$ concyclic.
1951 Moscow Mathematical Olympiad, 205
Among all orthogonal projections of a regular tetrahedron to all possible planes, find the projection of the greatest area.
2023 BMT, 27
Let $\omega$ be a circle with positive integer radius $r$. Suppose that it is possible to draw isosceles triangle with integer side lengths inscribed in $\omega$. Compute the number of possible values of $r$ where $1 \le r \le 2023^2$.
Submit your answer as a positive integer $E$. If the correct answer is $A$, your score for this question will be $\max \left( 0, 25\left(3 - 2 \max \left( \frac{A}{E} , \frac{E}{A}\right)\right)\right)$, rounded to the nearest integer.
2009 IMAR Test, 3
Consider a convex quadrilateral $ABCD$ with $AB=CB$ and $\angle ABC +2 \angle CDA = \pi$ and let $E$ be the midpoint of $AC$. Show that $\angle CDE =\angle BDA$.
Paolo Leonetti
2012 China Northern MO, 1
As shown in figure, given right $\vartriangle ABC$ with $\angle C=90^o$. $I$ is the incenter. The line $BI$ intersects segment $AC$ at the point $D$ . The line passing through $D$ parallel to $AI$ intersects $BC$ at point $E$. The line $EI$ intersects segment $AB$ at point $F$. Prove that $DF \perp AI$.
[img]https://cdn.artofproblemsolving.com/attachments/2/4/6fc94adb4ce12c3bf07948b8c57170ca01b256.png[/img]
Ukrainian TYM Qualifying - geometry, VI.1
Find all nonconvex quadrilaterals in which the sum of the distances to the lines containing the sides is the same for any interior point. Try to generalize the result in the case of an arbitrary non-convex polygon, polyhedron.
Indonesia Regional MO OSP SMA - geometry, 2002.4
Given an equilateral triangle $ABC$ and a point $P$ so that the distances $P$ to $A$ and to $C$ are not farther than the distances $P$ to $B$. Prove that $PB = PA + PC$ if and only if $P$ lies on the circumcircle of $\vartriangle ABC$.
2018 Yasinsky Geometry Olympiad, 6
Let $O$ and $I$ be the centers of the circumscribed and inscribed circle the acute-angled triangle $ABC$, respectively. It is known that line $OI$ is parallel to the side $BC$ of this triangle. Line $MI$, where $M$ is the midpoint of $BC$, intersects the altitude $AH$ at the point $T$. Find the length of the segment $IT$, if the radius of the circle inscribed in the triangle $ABC$ is equal to $r$.
(Grigory Filippovsky)
2009 Today's Calculation Of Integral, 503
Prove the following inequality.
\[ \frac{2}{2\plus{}e^{\frac 12}}<\int_0^1 \frac{dx}{1\plus{}xe^{x}}<\frac{2\plus{}e}{2(1\plus{}e)}\]
2008 BAMO, 4
A point $D$ lies inside triangle $ABC$. Let $A_1, B_1, C_1$ be the second intersection points of the lines $AD$, $BD$, and $CD$ with the circumcircles of $BDC$, $CDA$, and $ADB$, respectively. Prove that
$$\frac{AD}{AA_1} + \frac{BD}{BA_1} + \frac{CD}{CC_1} = 1.$$
Indonesia Regional MO OSP SMA - geometry, 2010.1
Given triangle $ABC$. Suppose $P$ and $P_1$ are points on $BC, Q$ lies on $CA, R$ lies on $AB$, such that
$$\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP_1}{P_1B}$$
Let $G$ be the centroid of triangle $ABC$ and $K = AP_1 \cap RQ$. Prove that points $P,G$, and $K$ are collinear.
2022 Novosibirsk Oral Olympiad in Geometry, 4
Fold the next seven corners into a rectangle.
[img]https://cdn.artofproblemsolving.com/attachments/b/b/2b8b9d6d4b72024996a66d41f865afb91bb9b7.png[/img]
III Soros Olympiad 1996 - 97 (Russia), 11.7
On the plane there are two circles $a$ and $b$ and a line $\ell$ perpendicular to the line passing through the centers of these circles. It is known that there are $4$ unequal circles, each of which touches $a$, $b$ and $\ell$. Find the radius of the smallest of these four circles if the radii of the other three are $2$, $3$ and $6$. Also find the ratio of the radii of the circles $a$ and $b$.
2004 Baltic Way, 17
Consider a rectangle with sidelengths 3 and 4, pick an arbitrary inner point on each side of this rectangle. Let $x, y, z$ and $u$ denote the side lengths of the quadrilateral spanned by these four points. Prove that $25 \leq x^2+y^2+z^2+u^2 \leq 50$.
Kyiv City MO Juniors Round2 2010+ geometry, 2022.8.4
Points $D, E, F$ are selected on sides $BC, CA, AB$ correspondingly of triangle $ABC$ with $\angle C = 90^\circ$ such that $\angle DAB = \angle CBE$ and $\angle BEC = \angle AEF$. Show that $DB = DF$.
[i](Proposed by Mykhailo Shtandenko)[/i]
1989 Flanders Math Olympiad, 2
When drawing all diagonals in a regular pentagon, one gets an smaller pentagon in the middle. What's the ratio of the areas of those pentagons?