This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Ukrainian TYM Qualifying - geometry, 2016.15

Tags: angle , geometry
A non isosceles triangle $ABC$ is given, in which $\angle A = 120^o$. Let $AL$ be its angle bisector, $AK$ be it's median, drawn from vertex $A$, point $O$ be the center of the circumcircle of this triangle, $F$ be the point of intersection of the lines $OL$ and $AK$. Prove that $\angle BFC = 60^o$.

2017 OMMock - Mexico National Olympiad Mock Exam, 1

Let $ABC$ be a triangle with circumcenter $O$. Point $D, E, F$ are chosen on sides $AB, BC$ and $AC$, respectively, such that $ADEF$ is a rhombus. The circumcircles of $BDE$ and $CFE$ intersect $AE$ at $P$ and $Q$ respectively. Show that $OP=OQ$. [i]Proposed by Ariel García[/i]

Kyiv City MO Seniors Round2 2010+ geometry, 2014.10.4

Three circles are constructed for the triangle $ABC $: the circle ${{w} _ {A}} $ passes through the vertices $B $ and $C $ and intersects the sides $AB $ and $ AC $ at points ${{A} _ {1}} $ and ${{A} _ {2}} $ respectively, the circle ${{w} _ {B}} $ passes through the vertices $A $ and $C $ and intersects the sides $BA $ and $BC $ at the points ${{B} _ {1}} $ and ${{B} _ {2}} $, ${{w} _ {C}} $ passes through the vertices $A $ and $B $ and intersects the sides $CA $ and $CB $ at the points ${{C} _ {1}} $ and ${{C} _ {2}} $. Let ${{A} _ {1}} {{A} _ {2}} \cap {{B} _ {1}} {{B} _ {2}} = {C} '$, ${{A} _ {1}} {{A} _ {2}} \cap {{C} _ {1}} {{C} _ {2}} = {B} '$ ta ${ {B} _ {1}} {{B} _ {2}} \cap {{C} _ {1}} {{C} _ {2}} = {A} '$ is Prove that the perpendiculars, which are omitted from the points ${A} ', \, \, {B}', \, \, {C} '$ to the lines $BC $, $CA $ and $AB $ respectively intersect at one point. (Rudenko Alexander)

2010 AMC 12/AHSME, 17

Equiangular hexagon $ ABCDEF$ has side lengths $ AB \equal{} CD \equal{} EF \equal{} 1$ and $ BC \equal{} DE \equal{} FA \equal{} r$. The area of $ \triangle ACE$ is $70\%$ of the area of the hexagon. What is the sum of all possible values of $ r$? $ \textbf{(A)}\ \frac {4\sqrt {3}}{3} \qquad \textbf{(B)}\ \frac {10}{3} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac {17}{4} \qquad \textbf{(E)}\ 6$

2015 Spain Mathematical Olympiad, 3

Tags: geometry
Let $ABC$ be a triangle. $M$, and $N$ points on $BC$, such that $BM=CN$, with $M$ in the interior of $BN$. Let $P$ and $Q$ be points in $AN$ and $AM$ respectively such that $\angle PMC= \angle MAB$, and $\angle QNB= \angle NAC$. Prove that $ \angle QBC= \angle PCB$.

1980 Vietnam National Olympiad, 1

Prove that for any tetrahedron in space, it is possible to find two perpendicular planes such that ratio between the projections of the tetrahedron on the two planes lies in the interval $[\frac{1}{\sqrt{2}}, \sqrt{2}].$

2005 Iran MO (3rd Round), 5

Suppose $H$ and $O$ are orthocenter and circumcenter of triangle $ABC$. $\omega$ is circumcircle of $ABC$. $AO$ intersects with $\omega$ at $A_1$. $A_1H$ intersects with $\omega$ at $A'$ and $A''$ is the intersection point of $\omega$ and $AH$. We define points $B',\ B'',\ C'$ and $C''$ similiarly. Prove that $A'A'',B'B''$ and $C'C''$ are concurrent in a point on the Euler line of triangle $ABC$.

2019 Balkan MO Shortlist, G4

Given an acute triangle $ABC$, let $M$ be the midpoint of $BC$ and $H$ the orthocentre. Let $\Gamma$ be the circle with diameter $HM$, and let $X,Y$ be distinct points on $\Gamma$ such that $AX,AY$ are tangent to $\Gamma$. Prove that $BXYC$ is cyclic.

Mathley 2014-15, 3

Let the incircle $\gamma$ of triangle $ABC$ be tangent to $BA, BC$ at $D, E$, respectively. A tangent $t$ to $\gamma$ , distinct from the sidelines, intersects the line $AB$ at $M$. If lines $CM, DE$ meet at$ K$, prove that lines $AK,BC$ and $t$ are parallel or concurrent. Michel Bataille , France

2011 HMNT, 6

Tags: geometry
Let $ABC$ be an equilateral triangle with $AB = 3$. Circle $\omega$ with diameter $1$ is drawn inside the triangle such that it is tangent to sides $AB$ and $AC$. Let $P$ be a point on $\omega$ and $ $ be a point on segment $BC$. Find the minimum possible length of the segment $PQ$.

1999 Harvard-MIT Mathematics Tournament, 7

Find an ordered pair $(a,b)$ of real numbers for which $x^2+ax+b$ has a non-real root whose cube is $343$.

2008 IMO, 6

Let $ ABCD$ be a convex quadrilateral with $ BA\neq BC$. Denote the incircles of triangles $ ABC$ and $ ADC$ by $ \omega_{1}$ and $ \omega_{2}$ respectively. Suppose that there exists a circle $ \omega$ tangent to ray $ BA$ beyond $ A$ and to the ray $ BC$ beyond $ C$, which is also tangent to the lines $ AD$ and $ CD$. Prove that the common external tangents to $ \omega_{1}$ and $\omega_{2}$ intersect on $ \omega$. [i]Author: Vladimir Shmarov, Russia[/i]

2007 Stanford Mathematics Tournament, 13

A rope of length 10 [i]m[/i] is tied tautly from the top of a flagpole to the ground 6 [i]m[/i] away from the base of the pole. An ant crawls up the rope and its shadow moves at a rate of 30 [i]cm/min[/i]. How many meters above the ground is the ant after 5 minutes? (This takes place on the summer solstice on the Tropic of Cancer so that the sun is directly overhead.)

2019 Swedish Mathematical Competition, 2

Segment $AB$ is the diameter of a circle. Points $C$ and $D$ lie on the circle. The rays $AC$ and $AD$ intersect the tangent to the circle at point $B$ at points $P$ and $Q$, respectively. Show that points $C, D, P$ and $Q$ lie on a circle.

2017 Novosibirsk Oral Olympiad in Geometry, 4

Tags: geometry , perimeter , grid
On grid paper, mark three nodes so that in the triangle they formed, the sum of the two smallest medians equals to half-perimeter.

2006 AIME Problems, 12

Equilateral $\triangle ABC$ is inscribed in a circle of radius 2. Extend $\overline{AB}$ through $B$ to point $D$ so that $AD=13$, and extend $\overline{AC}$ through $C$ to point $E$ so that $AE=11$. Through $D$, draw a line $l_1$ parallel to $\overline{AE}$, and through $E$, draw a line ${l}_2$ parallel to $\overline{AD}$. Let $F$ be the intersection of ${l}_1$ and ${l}_2$. Let $G$ be the point on the circle that is collinear with $A$ and $F$ and distinct from $A$. Given that the area of $\triangle CBG$ can be expressed in the form $\frac{p\sqrt{q}}{r}$, where $p$, $q$, and $r$ are positive integers, $p$ and $r$ are relatively prime, and $q$ is not divisible by the square of any prime, find $p+q+r$.

2023 Sharygin Geometry Olympiad, 8.6

Tags: geometry
For which $n$ the plane may be paved by congruent figures bounded by $n$ arcs of circles?

ICMC 5, 6

Is it possible to cover a circle of area $1$ with finitely many equilateral triangles whose areas sum to $1.01$, all pointing in the same direction? [i]Proposed by Ethan Tan[/i]

2007 Cuba MO, 6

Let the triangle $ABC$ be acute. Let us take in the segment $BC$ two points $F$ and $G$ such that $BG > BF = GC$ and an interior point$ P$ to the triangle on the bisector of $\angle BAC$. Then are drawn through $P$, $PD\parallel AB$ and $PE \parallel AC$, $D \in AC$ and $E \in AB$, $\angle FEP = \angle PDG$. prove that $\vartriangle ABC$ is isosceles.

LMT Guts Rounds, 2016

[u]Round 5[/u] [b]p13.[/b] A $2016 \times 2016$ chess board is cut into $k \ge 1$ rectangle(s) with positive integer sidelengths. Let $p$ be the sum of the perimeters of all $k$ rectangles. Additionally, let $m$ and $M$ be the minimum and maximum possible value of $\frac{p}{k}$, respectively. Determine the ordered pair $(m,M)$. [b]p14.[/b] For nonnegative integers $n$, let $f (n)$ be the product of the digits of $n$. Compute $\sum^{1000}_{i=1}f (i )$. [b]p15.[/b] How many ordered pairs of positive integers $(m,n)$ have the property that $mn$ divides $2016$? [u]Round 6[/u] [b]p16.[/b] Let $a,b,c$ be distinct integers such that $a +b +c = 0$. Find the minimum possible positive value of $|a^3 +b^3 +c^3|$. [b]p17.[/b] Find the greatest positive integer $k$ such that $11^k -2^k$ is a perfect square. [b]p18.[/b] Find all ordered triples $(a,b,c)$ with $a \le b \le c$ of nonnegative integers such that $2a +2b +2c = ab +bc +ca$. [u]Round 7[/u] [b]p19.[/b] Let $f :N \to N$ be a function such that $f ( f (n))+ f (n +1) = n +2$ for all positive integers $n$. Find $f (20)+ f (16)$. [b]p20.[/b] Let $\vartriangle ABC$ be a triangle with area $10$ and $BC = 10$. Find the minimum possible value of $AB \cdot AC$. [b]p21.[/b] Let $\vartriangle ABC$ be a triangle with sidelengths $AB = 19$, $BC = 24$, $C A = 23$. Let $D$ be a point on minor arc $BC$ of the circumcircle of $\vartriangle ABC$ such that $DB =DC$. A circle with center $D$ that passes through $B$ and $C$ interests $AC$ again at a point $E \ne C$. Find the length of $AE$. [u]Round 8[/u] [b]p22.[/b] Let $m =\frac12 \sqrt{2+\sqrt{2+... \sqrt2}}$, where there are $2014$ square roots. Let $f_1(x) =2x^2 -1$ and let $f_n(x) = f_1( f_{n-1}(x))$. Find $f_{2015}(m)$. [b]p23.[/b] How many ordered triples of integers $(a,b,c)$ are there such that $0 < c \le b \le a \le 2016$, and $a +b-c = 2016$? [b]p24.[/b] In cyclic quadrilateral $ABCD$, $\angle B AD = 120^o$,$\angle ABC = 150^o$,$CD = 8$ and the area of $ABCD$ is $6\sqrt3$. Find the perimeter of $ABCD$. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3158461p28714996]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3162282p28763571]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 BAMO, D/2

Sasha wants to bake $6$ cookies in his $8$ inch $\times$ $8$ inch square baking sheet. With a cookie cutter, he cuts out from the dough six circular shapes, each exactly $3$ inches in diameter. Can he place these six dough shapes on the baking sheet without the shapes touching each other? If yes, show us how. If no, explain why not. (Assume that the dough does not expand during baking.)

2008 ITest, 32

A right triangle has perimeter $2008$, and the area of a circle inscribed in the triangle is $100\pi^3$. Let $A$ be the area of the triangle. Compute $\lfloor A\rfloor$.

2014 NZMOC Camp Selection Problems, 5

Let $ABC$ be an acute angled triangle. Let the altitude from $C$ to $AB$ meet $AB$ at $C'$ and have midpoint $M$, and let the altitude from $B$ to $AC$ meet $AC$ at $B'$ and have midpoint $N$. Let $P$ be the point of intersection of $AM$ and $BB'$ and $Q$ the point of intersection of $AN$ and $CC'$. Prove that the point $M, N, P$ and $Q$ lie on a circle.

2010 Sharygin Geometry Olympiad, 12

Let $AC$ be the greatest leg of a right triangle $ABC,$ and $CH$ be the altitude to its hypotenuse. The circle of radius $CH$ centered at $H$ intersects $AC$ in point $M.$ Let a point $B'$ be the reflection of $B$ with respect to the point $H.$ The perpendicular to $AB$ erected at $B'$ meets the circle in a point $K$. Prove that [b]a)[/b] $B'M \parallel BC$ [b]b)[/b] $AK$ is tangent to the circle.

2012-2013 SDML (High School), 6

Tags: geometry
A convex quadrilateral $ABCD$ is constructed out of metal rods with negligible thickness. The side lengths are $AB=BC=CD=5$ and $DA=3$. The figure is then deformed, with the angles between consecutive rods allowed to change but the rods themselves staying the same length. The resulting figure is a convex polygon for which $\angle{ABC}$ is as large as possible. What is the area of this figure? $\text{(A) }6\qquad\text{(B) }8\qquad\text{(C) }9\qquad\text{(D) }10\qquad\text{(E) }12$