This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2003 Balkan MO, 2

Let $ABC$ be a triangle, and let the tangent to the circumcircle of the triangle $ABC$ at $A$ meet the line $BC$ at $D$. The perpendicular to $BC$ at $B$ meets the perpendicular bisector of $AB$ at $E$. The perpendicular to $BC$ at $C$ meets the perpendicular bisector of $AC$ at $F$. Prove that the points $D$, $E$ and $F$ are collinear. [i]Valentin Vornicu[/i]

2008 Tournament Of Towns, 5

On a straight track are several runners, each running at a di fferent constant speed. They start at one end of the track at the same time. When a runner reaches any end of the track, he immediately turns around and runs back with the same speed (then he reaches the other end and turns back again, and so on). Some time after the start, all runners meet at the same point. Prove that this will happen again.

2023 Iran MO (2nd Round), P6

Tags: geometry
6. Circles $W_{1}$ and $W_{2}$ with equal radii are given. Let $P$,$Q$ be the intersection of the circles. points $B$ and $C$ are on $W_{1}$ and $W_{2}$ such that they are inside $W_{2}$ and $W_{1}$ respectively. Points $X$,$Y$ $\neq$ $P$ are on $W_{1}$ and $W_{2}$ respectively, such that $\angle{BPQ}=\angle{BYQ}$ and $\angle{CPQ}=\angle{CXQ}$.Denote by $S$ as the other intersection of $(YPB)$ and $(XPC)$. Prove that $QS,BC,XY$ are concurrent.

2011 IMO Shortlist, 6

Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$. [i]Proposed by Jan Vonk, Belgium and Hojoo Lee, South Korea[/i]

III Soros Olympiad 1996 - 97 (Russia), 9.6

In triangle $ABC$, angle $B$ is not right. The circle inscribed in $ABC$ touches $AB$ and $BC$ at points $C_1$ and $A_1$, and the feet of the altitudes drawn to the sides $AB$ and $BC$ are points $C_2$ and $A_2$. Prove that the intersection point of the altitudes of triangle $A_1BC_1$ is the center of the circle inscribed in triangle $A_2BC_2$.

MBMT Guts Rounds, 2022

[hide=D stands for Dedekind, Z stands for Zermelo]they had two problem sets under those two names[/hide] [b]Z15.[/b] Let $AOB$ be a quarter circle with center $O$ and radius $4$. Let $\omega_1$ and $\omega_2$ be semicircles inside $AOB$ with diameters $OA$ and $OB$, respectively. Find the area of the region within $AOB$ but outside of $\omega_1$ and $\omega_2$. [u]Set 4[/u] [b]Z16.[/b] Integers $a, b, c$ form a geometric sequence with an integer common ratio. If $c = a + 56$, find $b$. [b]Z17 / D24.[/b] In parallelogram $ABCD$, $\angle A \cdot \angle C - \angle B \cdot \angle D = 720^o$ where all angles are in degrees. Find the value of $\angle C$. [b]Z18.[/b] Steven likes arranging his rocks. A mountain formation is where the sequence of rocks to the left of the tallest rock increase in height while the sequence of rocks to the right of the tallest rock decrease in height. If his rocks are $1, 2, . . . , 10$ inches in height, how many mountain formations are possible? For example: the sequences $(1-3-5-6-10-9-8-7-4-2)$ and $(1-2-3-4-5-6-7-8-9-10)$ are considered mountain formations. [b]Z19.[/b] Find the smallest $5$-digit multiple of $11$ whose sum of digits is $15$. [b]Z20.[/b] Two circles, $\omega_1$ and $\omega_2$, have radii of $2$ and $8$, respectively, and are externally tangent at point $P$. Line $\ell$ is tangent to the two circles, intersecting $\omega_1$ at $A$ and $\omega_2$ at $B$. Line $m$ passes through $P$ and is tangent to both circles. If line $m$ intersects line $\ell$ at point $Q$, calculate the length of $P Q$. [u]Set 5[/u] [b]Z21.[/b] Sen picks a random $1$ million digit integer. Each digit of the integer is placed into a list. The probability that the last digit of the integer is strictly greater than twice the median of the digit list is closest to $\frac{1}{a}$, for some integer $a$. What is $a$? [b]Z22.[/b] Let $6$ points be evenly spaced on a circle with center $O$, and let $S$ be a set of $7$ points: the $6$ points on the circle and $O$. How many equilateral polygons (not self-intersecting and not necessarily convex) can be formed using some subset of $S$ as vertices? [b]Z23.[/b] For a positive integer $n$, define $r_n$ recursively as follows: $r_n = r^2_{n-1} + r^2_{n-2} + ... + r^2_0$,where $r_0 = 1$. Find the greatest integer less than $$\frac{r_2}{r^2_1}+\frac{r_3}{r^2_2}+ ...+\frac{r_{2023}}{r^2_{2022}}.$$ [b]Z24.[/b] Arnav starts at $21$ on the number line. Every minute, if he was at $n$, he randomly teleports to $2n^2$, $n^2$, or $\frac{n^2}{4}$ with equal chance. What is the probability that Arnav only ever steps on integers? [b]Z25.[/b] Let $ABCD$ be a rectangle inscribed in circle $\omega$ with $AB = 10$. If $P$ is the intersection of the tangents to $\omega$ at $C$ and $D$, what is the minimum distance from $P$ to $AB$? PS. You should use hide for answers. D.1-15 / Z.1-8 problems have been collected [url=https://artofproblemsolving.com/community/c3h2916240p26045561]here [/url]and D.16-30/Z.9-14, 17, 26-30 [url=https://artofproblemsolving.com/community/c3h2916250p26045695]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1980 IMO Longlists, 15

Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540°.

Mathley 2014-15, 7

The circles $\gamma$ and $\delta$ are internally tangent to the circle $\omega$ at $A$ and $B$. From $A$, draw two tangent lines $\ell_1, \ell_2$ to $\delta$, . From $B$ draw two tangent lines $t_1, t_2$ to $\gamma$ . Let $\ell_1$ intersect $t_1$ at $X$ and $\ell_2$ intersect $t_2$ at $Y$ . Prove that the quadrilateral $AX BY$ is cyclic. Nguyen Van Linh, High School of Natural Sciences, Hanoi National University

2004 National High School Mathematics League, 6

Shaft section of a circular cone with vertex $P$ is an isosceles right triangle. $A$ is a point on the circle of the bottom surface, while $B$ is a point inside the circle, $O$ is the center of the circle. If $AB\perp OB$ at $B$, $OH\perp PB$ at $H$, $PA=4$, $C$ is the midpoint of $PA$, then when the volume of triangular pyramid $O-HPC$ takes its maximum value, the length of $OB$ is $\text{(A)}\frac{\sqrt5}{3}\qquad\text{(B)}\frac{2\sqrt5}{3}\qquad\text{(C)}\frac{\sqrt6}{3}\qquad\text{(D)}\frac{2\sqrt6}{3}\qquad$

1994 Czech And Slovak Olympiad IIIA, 2

A cuboid of volume $V$ contains a convex polyhedron $M$. The orthogonal projection of $M$ onto each face of the cuboid covers the entire face. What is the smallest possible volume of polyhedron $M$?

2002 France Team Selection Test, 1

In an acute-angled triangle $ABC$, $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$ respectively, and $M$ is the midpoint of $AB$. a) Prove that $MA_1$ is tangent to the circumcircle of triangle $A_1B_1C$. b) Prove that the circumcircles of triangles $A_1B_1C,BMA_1$, and $AMB_1$ have a common point.

VII Soros Olympiad 2000 - 01, 11.8

Three spheres are tangent to one plane, to a straight line perpendicular to this plane, and in pairs to each other. The radius of the largest sphere is $1$. Within what limits can the radius of the smallest sphere vary?

2006 Germany Team Selection Test, 1

Let $A$, $B$, $C$, $D$, $E$, $F$ be six points on a circle such that $AE\parallel BD$ and $BC\parallel DF$. Let $X$ be the reflection of the point $D$ in the line $CE$. Prove that the distance from the point $X$ to the line $EF$ equals to the distance from the point $B$ to the line $AC$.

2006 Canada National Olympiad, 2

Let $ABC$ be acute triangle. Inscribe a rectangle $DEFG$ in this triangle such that $D\in AB,E\in AC,F\in BC,G\in BC$. Describe the locus of (i.e., the curve occupied by) the intersections of the diagonals of all possible rectangles $DEFG$.

2007 Irish Math Olympiad, 3

Let $ ABC$ be a triangle the lengths of whose sides $ BC,CA,AB,$ respectively, are denoted by $ a,b,$ and $ c$. Let the internal bisectors of the angles $ \angle BAC, \angle ABC, \angle BCA,$ respectively, meet the sides $ BC,CA,$ and $ AB$ at $ D,E,$ and $ F$. Denote the lengths of the line segments $ AD,BE,CF$ by $ d,e,$ and $ f$, respectively. Prove that: $ def\equal{}\frac{4abc(a\plus{}b\plus{}c) \Delta}{(a\plus{}b)(b\plus{}c)(c\plus{}a)}$ where $ \Delta$ stands for the area of the triangle $ ABC$.

2007 AMC 12/AHSME, 16

Each face of a regular tetrahedron is painted either red, white or blue. Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical. How many distinguishable colorings are possible? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 27 \qquad \textbf{(D)}\ 54 \qquad \textbf{(E)}\ 81$

1968 Swedish Mathematical Competition, 3

Show that the sum of the squares of the sides of a quadrilateral is at least the sum of the squares of the diagonals. When does equality hold?

2020 Switzerland - Final Round, 3

We are given $n$ distinct rectangles in the plane. Prove that between the $4n$ interior angles formed by these rectangles at least $4\sqrt n$ are distinct.

2018 MMATHS, 3

Suppose $n$ points are uniformly chosen at random on the circumference of the unit circle and that they are then connected with line segments to form an $n$-gon. What is the probability that the origin is contained in the interior of this $n$-gon? Give your answer in terms of $n$, and consider only $n \ge 3$.

2005 IMO Shortlist, 7

In an acute triangle $ABC$, let $D$, $E$, $F$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $BC$, $CA$, $AB$, respectively, and let $P$, $Q$, $R$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $EF$, $FD$, $DE$, respectively. Prove that $p\left(ABC\right)p\left(PQR\right) \ge \left(p\left(DEF\right)\right)^{2}$, where $p\left(T\right)$ denotes the perimeter of triangle $T$ . [i]Proposed by Hojoo Lee, Korea[/i]

2024 Kyiv City MO Round 2, Problem 4

Tags: geometry
Points $X$ and $Y$ are chosen inside an acute-angled triangle $ABC$ with altitude $AD$ so that $\angle BXA + \angle ACB = 180^\circ , \angle CYA + \angle ABC = 180^\circ$, and $CD + AY = BD + AX$. Point $M$ is chosen on the ray $BX$ so that $X$ lies on segment $BM$ and $XM = AC$, and point $N$ is chosen on the ray $CY$ so that $Y$ lies on segment $CN$ and $YN = AB$. Prove that $AM = AN$. [i]Proposed by Mykhailo Shtandenko[/i]

1980 IMO, 16

In a pentagon $\Pi$ in the plane, $M_1,...M_5$ are the midpoints of the consecutive sides. $Z_i$ is the centroid of the triangle $M_{i} M_{i+1} M_{i+3}$, where $i=1,2...5$ and it is understood that $M_{j\cdot 5}=M_j$ Given pentagon $Z_{1}Z_{2}Z_{3}Z_{4}Z_{5}$, determine the original pentagon $\Pi$.

2016 Rioplatense Mathematical Olympiad, Level 3, 3

Let $A B C$ be an acute-angled triangle of circumcenter $O$ and orthocenter $H$. Let $M$ be the midpoint of $BC, N$ be the symmetric of $H$ with respect to $A, P$ be the midpoint of $NM$ and $X$ be a point on the line A H such that $MX$ is parallel to $CH$. Prove that $BX$ and $OP$ are perpendicular.

2020 Indonesia Juniors, day 2

p1. Let $U_n$ be a sequence of numbers that satisfy: $U_1=1$, $U_n=1+U_1U_2U_3...U_{n-1}$ for $n=2,3,...,2020$ Prove that $\frac{1}{U_1}+\frac{1}{U_2}+...+\frac{1}{U_{2019}}<2$ p2. If $a= \left \lceil \sqrt{2020+\sqrt{2020+...+\sqrt{2020}}} \right\rceil$ , $b= \left \lfloor \sqrt{1442+\sqrt{1442+...+\sqrt{1442}}} \right \rfloor$, and $c=a-b$, then determine the value of $c$. p3. Fajar will buy a pair of koi fish in the aquarium. If he randomly picks $2$ fish, then the probability that the $2$ fish are of the same sex is $1/2$. Prove that the number of koi fish in the aquarium is a perfect square. p4. A pharmacist wants to put $155$ ml of liquid into $3$ bottles. There are 3 bottle choices, namely a. Bottle A $\bullet$ Capacity: $5$ ml $\bullet$ The price of one bottle is $10,000$ Rp $\bullet$ If you buy the next bottle, you will get a $20\%$ discount, up to the $4$th purchase or if you buy $4$ bottles, get $ 1$ free bottle A b. Bottle B $\bullet$ Capacity: $8$ ml $\bullet$ The price of one bottle is $15.000$ Rp $\bullet$ If you buy $2$ : $20\%$ discount $\bullet$ If you buy $3$ : Free $ 1$ bottle of B c. Bottle C $\bullet$ Capacity : $14$ ml $\bullet$ Buy $ 1$ : $25.000$ Rp $\bullet$ Buy $2$ : Free $ 1$ bottle of A $\bullet$ Buy $3$ : Free $ 1$ bottle of B If in one purchase, you can only buy a maximum of $4$ bottles, then look for the possibility of pharmacists putting them in bottles so that the cost is minimal (bottles do not have to be filled to capacity). p5. Two circles, let's say $L_1$ and $L_2$ have the same center, namely at point $O$. Radius of $L_1$ is $10$ cm and radius of $L_2$ is $5$ cm. The points $A, B, C, D, E, F$ lie on $L_1$ so the arcs $AB,BC,CD,DE,EF,FA$ are equal. The points $P, Q, R$ lie on $L_2$ so that the arcs $PQ,QR,RS$ are equal and $PA=PF=QB=QC=RD=RD$ . Determine the area of ​​the shaded region. [img]https://cdn.artofproblemsolving.com/attachments/b/5/0729eca97488ddfc82ab10eda02c708fecd7ae.png[/img]

Mid-Michigan MO, Grades 7-9, 2017

[b]p1.[/b] There are $5$ weights of masses $1,2,3,5$, and $10$ grams. One of the weights is counterfeit (its weight is different from what is written, it is unknown if the weight is heavier or lighter). How to find the counterfeit weight using simple balance scales only twice? [b]p2.[/b] There are $998$ candies and chocolate bars and $499$ bags. Each bag may contain two items (either two candies, or two chocolate bars, or one candy and one chocolate bar). Ann distributed candies and chocolate bars in such a way that half of the candies share a bag with a chocolate bar. Helen wants to redistribute items in the same bags in such a way that half of the chocolate bars would share a bag with a candy. Is it possible to achieve that? [b]p3.[/b] Insert in sequence $2222222222$ arithmetic operations and brackets to get the number $999$ (For instance, from the sequence $22222$ one can get the number $45$: $22*2+2/2 = 45$). [b]p4.[/b] Put numbers from $15$ to $23$ in a $ 3\times 3$ table in such a way to make all sums of numbers in two neighboring cells distinct (neighboring cells share one common side). [b]p5.[/b] All integers from $1$ to $200$ are colored in white and black colors. Integers $1$ and $200$ are black, $11$ and $20$ are white. Prove that there are two black and two white numbers whose sums are equal. [b]p6.[/b] Show that $38$ is the sum of few positive integers (not necessarily, distinct), the sum of whose reciprocals is equal to $1$. (For instance, $11=6+3+2$, $1/16+1/13+1/12=1$.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].