This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1985 Swedish Mathematical Competition, 5

In a rectangular coordinate system, $O$ is the origin and $A(a,0)$, $B(0,b)$ and $C(c,d)$ the vertices of a triangle. Prove that $AB+BC+CA \ge 2CO$.

2020 Taiwan TST Round 2, 2

Tags: geometry
Let $ABCDE$ be a convex pentagon with $CD= DE$ and $\angle EDC \ne 2 \cdot \angle ADB$. Suppose that a point $P$ is located in the interior of the pentagon such that $AP =AE$ and $BP= BC$. Prove that $P$ lies on the diagonal $CE$ if and only if area $(BCD)$ + area $(ADE)$ = area $(ABD)$ + area $(ABP)$. (Hungary)

2019 Novosibirsk Oral Olympiad in Geometry, 3

A square sheet of paper $ABCD$ is folded straight in such a way that point $B$ hits to the midpoint of side $CD$. In what ratio does the fold line divide side $BC$?

2014 Oral Moscow Geometry Olympiad, 4

The medians $AA_0, BB_0$, and $CC_0$ of the acute-angled triangle $ABC$ intersect at the point $M$, and heights $AA_1, BB_1$ and $CC_1$ at point $H$. Tangent to the circumscribed circle of triangle $A_1B_1C_1$ at $C_1$ intersects the line $A_0B_0$ at the point $C'$. Points $A'$ and $B'$ are defined similarly. Prove that $A', B'$ and $C'$ lie on one line perpendicular to the line $MH$.

2012 Romania National Olympiad, 2

Let $ABC$ be a triangle with right $\angle A$. Consider points $D \in (AC)$ and $E \in (BD)$ such that $\angle ABC = \angle ECD = \angle CED$. Prove that $BE = 2 \cdot AD$

2010 Contests, 4

A $9\times 7$ rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with $90^\circ$) and square tiles composed by four unit squares. Let $n\ge 0$ be the number of the $2 \times 2 $ tiles which can be used in such a tiling. Find all the values of $n$.

2020 Balkan MO, 1

Tags: geometry
Let $ABC$ be an acute triangle with $AB=AC$, let $D$ be the midpoint of the side $AC$, and let $\gamma$ be the circumcircle of the triangle $ABD$. The tangent of $\gamma$ at $A$ crosses the line $BC$ at $E$. Let $O$ be the circumcenter of the triangle $ABE$. Prove that midpoint of the segment $AO$ lies on $\gamma$. [i]Proposed by Sam Bealing, United Kingdom[/i]

2011 Tournament of Towns, 4

Does there exist a convex $N$-gon such that all its sides are equal and all vertices belong to the parabola $y = x^2$ for a) $N = 2011$ b) $N = 2012$ ?

2008 Greece Team Selection Test, 2

The bisectors of the angles $\angle{A},\angle{B},\angle{C}$ of a triangle $\triangle{ABC}$ intersect with the circumcircle $c_1(O,R)$ of $\triangle{ABC}$ at $A_2,B_2,C_2$ respectively.The tangents of $c_1$ at $A_2,B_2,C_2$ intersect each other at $A_3,B_3,C_3$ (the points $A_3,A$ lie on the same side of $BC$,the points $B_3,B$ on the same side of $CA$,and $C_3,C$ on the same side of $AB$).The incircle $c_2(I,r)$ of $\triangle{ABC}$ is tangent to $BC,CA,AB$ at $A_1,B_1,C_1$ respectively.Prove that $A_1A_2,B_1B_2,C_1C_2,AA_3,BB_3,CC_3$ are concurrent. [hide=Diagram][asy]import graph; size(11cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -9.26871978147865, xmax = 19.467150423463277, ymin = -6.150626456647122, ymax = 10.10782642246474; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); draw((1.0409487561836381,4.30054785243355)--(0.,0.)--(6.,0.)--cycle, aqaqaq); /* draw figures */ draw((1.0409487561836381,4.30054785243355)--(0.,0.), uququq); draw((0.,0.)--(6.,0.), uququq); draw((6.,0.)--(1.0409487561836381,4.30054785243355), uququq); draw(circle((3.,1.550104087253063), 3.376806580383107)); draw(circle((1.9303371951242874,1.5188413314630436), 1.5188413314630436)); draw((1.0226422135625703,7.734611112525813)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((-1.2916762981259242,-1.8267024931300444)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((-0.2820306621765219,2.344520485530311)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((1.0559139088339535,1.4932847901569466)--(5.212367857300808,4.101231513568902), linetype("2 2")); draw((1.0559139088339535,1.4932847901569466)--(3.,-1.8267024931300442), linetype("2 2")); draw((12.047991949367804,-1.8267024931300444)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((1.0226422135625703,7.734611112525813)--(-1.2916762981259242,-1.8267024931300444)); draw((-1.2916762981259242,-1.8267024931300444)--(12.047991949367804,-1.8267024931300444)); draw((12.047991949367804,-1.8267024931300444)--(1.0226422135625703,7.734611112525813)); /* dots and labels */ dot((1.0409487561836381,4.30054785243355),linewidth(3.pt) + dotstyle); label("$A$", (0.5889800538632699,4.463280489351154), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("$B$", (-0.5723380089304358,-0.10096957139619551), NE * labelscalefactor); dot((6.,0.),linewidth(3.pt) + dotstyle); label("$C$", (6.233525986976863,0.06107480945873997), NE * labelscalefactor); label("$c_1$", (1.9663572911302232,5.111458012770896), NE * labelscalefactor); dot((3.,-1.8267024931300442),linewidth(3.pt) + dotstyle); label("$A_2$", (2.9386235762598374,-2.3155761097469805), NE * labelscalefactor); dot((5.212367857300808,4.101231513568902),linewidth(3.pt) + dotstyle); label("$B_2$", (5.315274495465561,4.274228711687063), NE * labelscalefactor); dot((-0.2820306621765219,2.344520485530311),linewidth(3.pt) + dotstyle); label("$C_2$", (-0.9234341674494632,2.6807922999468636), NE * labelscalefactor); dot((1.0226422135625703,7.734611112525813),linewidth(3.pt) + dotstyle); label("$A_3$", (1.1291279900463889,7.893219884113956), NE * labelscalefactor); dot((-1.2916762981259242,-1.8267024931300444),linewidth(3.pt) + dotstyle); label("$B_3$", (-1.8146782621516093,-1.4783468086631473), NE * labelscalefactor); dot((12.047991949367804,-1.8267024931300444),linewidth(3.pt) + dotstyle); label("$C_3$", (12.148145888182015,-1.6673985863272387), NE * labelscalefactor); dot((1.9303371951242874,1.5188413314630436),linewidth(3.pt) + dotstyle); label("$I$", (2.047379481557691,1.681518618008095), NE * labelscalefactor); dot((1.9303371951242878,0.),linewidth(3.pt) + dotstyle); label("$A_1$", (1.4532167517562602,-0.5600953171518461), NE * labelscalefactor); label("$c_2$", (1.5072315453745722,3.247947632939138), NE * labelscalefactor); dot((2.9254299438737803,2.666303492733126),linewidth(3.pt) + dotstyle); label("$B_1$", (2.8576013858323694,3.1129106488933584), NE * labelscalefactor); dot((0.45412477306806903,1.8761589424582812),linewidth(3.pt) + dotstyle); label("$C_1$", (0,2.3296961414278368), NE * labelscalefactor); dot((1.0559139088339535,1.4932847901569466),linewidth(3.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/hide]

2019 HMNT, 1

Dylan has a $100\times 100$ square, and wants to cut it into pieces of area at least $1$. Each cut must be a straight line (not a line segment) and must intersect the interior of the square. What is the largest number of cuts he can make?

2015 BMT Spring, 5

Tags: geometry
Let $A = (1, 0)$, $B = (0, 1)$, and $C = (0, 0)$. There are three distinct points, $P, Q, R$, such that $\{A, B, C, P\}$, $\{A, B, C, Q\}$, $\{A, B, C, R\}$ are all parallelograms (vertices unordered). Find the area of $\vartriangle PQR$.

2014 Swedish Mathematical Competition, 2

Three circles that touch each other externally have all their centers on one fourth circle with radius $R$. Show that the total area of the three circle disks is smaller than $4\pi R^2$.

2014 Oral Moscow Geometry Olympiad, 1

In triangle $ABC, \angle A= 45^o, BH$ is the altitude, the point $K$ lies on the $AC$ side, and $BC = CK$. Prove that the center of the circumscribed circle of triangle $ABK$ coincides with the center of an excircle of triangle $BCH$.

2017 Yasinsky Geometry Olympiad, 2

Prove that if all the edges of the tetrahedron are equal triangles (such a tetrahedron is called equilateral), then its projection on the plane of a face is a triangle.

1993 Mexico National Olympiad, 5

$OA, OB, OC$ are three chords of a circle. The circles with diameters $OA, OB$ meet again at $Z$, the circles with diameters $OB, OC$ meet again at $X$, and the circles with diameters $OC, OA$ meet again at $Y$. Show that $X, Y, Z$ are collinear.

2020-21 IOQM India, 12

Tags: geometry
Given a pair of concentric circles, chords $AB,BC,CD,\dots$ of the outer circle are drawn such that they all touch the inner circle. If $\angle ABC = 75^{\circ}$, how many chords can be drawn before returning to the starting point ? [img]https://i.imgur.com/Cg37vwa.png[/img]

2007 Putnam, 2

Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola $ xy\equal{}1$ and both branches of the hyperbola $ xy\equal{}\minus{}1.$ (A set $ S$ in the plane is called [i]convex[/i] if for any two points in $ S$ the line segment connecting them is contained in $ S.$)

2018 Oral Moscow Geometry Olympiad, 2

Bisectors of angle $C$ and externalangle $A$ of trapezoid $ABCD$ with bases $BC$ and $AD$ intersect at point $M$, and the bisector of angle $B$ and external angle $D$ intersect at point $N$. Prove that the midpoint of the segment $MN$ is equidistant from the lines $AB$ and $CD$.

2016 ISI Entrance Examination, 4

Given a square $ABCD$ with two consecutive vertices, say $A$ and $B$ on the positive $x$-axis and positive $y$-axis respectively. Suppose the other vertice $C$ lying in the first quadrant has coordinates $(u , v)$. Then find the area of the square $ABCD$ in terms of $u$ and $v$.

2021 Science ON all problems, 4

Tags: geometry
$\textbf{(a)}$ On the sides of triangle $ABC$ we consider the points $M\in \overline{BC}$, $N\in \overline{AC}$ and $P\in \overline{AB}$ such that the quadrilateral $MNAP$ with right angles $\angle MNA$ and $\angle MPA$ has an inscribed circle. Prove that $MNAP$ has to be a kite. $\textbf{(b)}$ Is it possible for an isosceles trapezoid to be orthodiagonal and circumscribed too? [i] (Călin Udrea) [/i]

2005 Canada National Olympiad, 4

Let $ ABC$ be a triangle with circumradius $ R$, perimeter $ P$ and area $ K$. Determine the maximum value of: $ \frac{KP}{R^3}$.

1980 IMO, 21

Tags: geometry
Let $ABCDEFGH$ be the rectangular parallelepiped where $ABCD$ and $EFGH$ are squares and the edges $AE,BF,CG,DH$ are all perpendicular to the squares. Prove that if the $12$ edges of the parallelepiped have integer lengths, the internal diagonal $AG$ and the face diagonal $AF$ cannot both have integer length.

1964 IMO Shortlist, 3

A circle is inscribed in a triangle $ABC$ with sides $a,b,c$. Tangents to the circle parallel to the sides of the triangle are contructe. Each of these tangents cuts off a triagnle from $\triangle ABC$. In each of these triangles, a circle is inscribed. Find the sum of the areas of all four inscribed circles (in terms of $a,b,c$).

1992 All Soviet Union Mathematical Olympiad, 575

A plane intersects a sphere in a circle $C$. The points $A$ and $B$ lie on the sphere on opposite sides of the plane. The line joining $A$ to the center of the sphere is normal to the plane. Another plane $p$ intersects the segment $AB$ and meets $C$ at $P$ and $Q$. Show that $BP\cdot BQ$ is independent of the choice of $p$.

2021 Saudi Arabia Training Tests, 1

Let $ABC$ be an acute, non-isosceles triangle with $AD$,$BE$, $CF$ are altitudes and $d$ is the tangent line of the circumcircle of triangle $ABC$ at $A$. The line through $H$ and parallel to $EF$ cuts $DE$, $DF$ at $Q, P$ respectively. Prove that $d$ is tangent to the ex-circle respect to vertex $D$ of triangle $DPQ$.