This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 533

2005 MOP Homework, 2

Let $ABC$ be a triangle, and let $D$ be a point on side $AB$. Circle $\omega_1$ passes through $A$ and $D$ and is tangent to line $AC$ at $A$. Circle $\omega_2$ passes through $B$ and $D$ and is tangent to line $BC$ at $B$. Circles $\omega_1$ and $\omega_2$ meet at $D$ and $E$. Point $F$ is the reflection of $C$ across the perpendicular bisector of $AB$. Prove that points $D$, $E$, and $F$ are collinear.

2019 Middle European Mathematical Olympiad, 5

Let $ABC$ be an acute-angled triangle such that $AB<AC$. Let $D$ be the point of intersection of the perpendicular bisector of the side $BC$ with the side $AC$. Let $P$ be a point on the shorter arc $AC$ of the circumcircle of the triangle $ABC$ such that $DP \parallel BC$. Finally, let $M$ be the midpoint of the side $AB$. Prove that $\angle APD=\angle MPB$. [i]Proposed by Dominik Burek, Poland[/i]

1993 Bundeswettbewerb Mathematik, 3

In the triangle $ABC$, let $A'$ be the intersection of the perpendicular bisector of $AB$ and the angle bisector of $\angle BAC$ and define $B', C'$ analogously. Prove that a) The triangle $ABC$ is equilateral if and only if $A' =B'.$ b) If $A', B'$ and $C'$ are distinct, we have $\angle B' A' C' = 90^{\circ} - \frac{1}{2} \angle BAC.$

2010 All-Russian Olympiad, 3

Lines tangent to circle $O$ in points $A$ and $B$, intersect in point $P$. Point $Z$ is the center of $O$. On the minor arc $AB$, point $C$ is chosen not on the midpoint of the arc. Lines $AC$ and $PB$ intersect at point $D$. Lines $BC$ and $AP$ intersect at point $E$. Prove that the circumcentres of triangles $ACE$, $BCD$, and $PCZ$ are collinear.

2007 CentroAmerican, 3

Consider a circle $S$, and a point $P$ outside it. The tangent lines from $P$ meet $S$ at $A$ and $B$, respectively. Let $M$ be the midpoint of $AB$. The perpendicular bisector of $AM$ meets $S$ in a point $C$ lying inside the triangle $ABP$. $AC$ intersects $PM$ at $G$, and $PM$ meets $S$ in a point $D$ lying outside the triangle $ABP$. If $BD$ is parallel to $AC$, show that $G$ is the centroid of the triangle $ABP$. [i]Arnoldo Aguilar (El Salvador)[/i]

2014 Contests, 1

In a triangle $ABC$, let $D$ be the point on the segment $BC$ such that $AB+BD=AC+CD$. Suppose that the points $B$, $C$ and the centroids of triangles $ABD$ and $ACD$ lie on a circle. Prove that $AB=AC$.

2009 India National Olympiad, 1

Let $ ABC$ be a tringle and let $ P$ be an interior point such that $ \angle BPC \equal{} 90 ,\angle BAP \equal{} \angle BCP$.Let $ M,N$ be the mid points of $ AC,BC$ respectively.Suppose $ BP \equal{} 2PM$.Prove that $ A,P,N$ are collinear.

2011 Benelux, 2

Let $ABC$ be a triangle with incentre $I$. The angle bisectors $AI$, $BI$ and $CI$ meet $[BC]$, $[CA]$ and $[AB]$ at $D$, $E$ and $F$, respectively. The perpendicular bisector of $[AD]$ intersects the lines $BI$ and $CI$ at $M$ and $N$, respectively. Show that $A$, $I$, $M$ and $N$ lie on a circle.

2015 Bosnia Herzegovina Team Selection Test, 6

Let $D$, $E$ and $F$ be points in which incircle of triangle $ABC$ touches sides $BC$, $CA$ and $AB$, respectively, and let $I$ be a center of that circle.Furthermore, let $P$ be a foot of perpendicular from point $I$ to line $AD$, and let $M$ be midpoint of $DE$. If $\{N\}=PM\cap{AC}$, prove that $DN \parallel EF$

2007 District Olympiad, 2

Consider a rectangle $ABCD$ with $AB = 2$ and $BC = \sqrt3$. The point $M$ lies on the side $AD$ so that $MD = 2 AM$ and the point $N$ is the midpoint of the segment $AB$. On the plane of the rectangle rises the perpendicular MP and we choose the point $Q$ on the segment $MP$ such that the measure of the angle between the planes $(MPC)$ and $(NPC)$ shall be $45^o$, and the measure of the angle between the planes $(MPC)$ and $(QNC)$ shall be $60^o$. a) Show that the lines $DN$ and $CM$ are perpendicular. b) Show that the point $Q$ is the midpoint of the segment $MP$.

2009 Flanders Math Olympiad, 3

Consider a line segment $[AB]$ with midpoint $M$ and perpendicular bisector $m$. For each point$ X \ne M$ on m consider we are the intersection point $Y$ of the line $BX$ with the bisector from the angle $\angle BAX$. As $X$ approaches $M$, then approaches $Y$ to a point of $[AB]$. Which? [img]https://cdn.artofproblemsolving.com/attachments/a/3/17d72a23011a9ec22deb20184717cc9c020a2b.png[/img] [hide=original wording]Beschouw een lijnstuk [AB] met midden M en middelloodlijn m. Voor elk punt X 6= M op m beschouwenwe het snijpunt Y van de rechte BX met de bissectrice van de hoek < BAX . Als X tot M nadert, dan nadert Y tot een punt van [AB]. Welk? [/hide]

2012 Uzbekistan National Olympiad, 5

Given points $A,B,C$ and $D$ lie a circle. $AC\cap BD=K$. $I_1, I_2,I_3$ and $I_4$ incenters of $ABK,BCK,CDK,DKA$. $M_1,M_2,M_3,M_4$ midpoints of arcs $AB,BC,CA,DA$ . Then prove that $M_1I_1,M_2I_2,M_3I_3,M_4I_4$ are concurrent.

2004 AIME Problems, 7

$ABCD$ is a rectangular sheet of paper that has been folded so that corner $B$ is matched with point $B'$ on edge $AD$. The crease is $EF$, where $E$ is on $AB$ and $F$is on $CD$. The dimensions $AE=8$, $BE=17$, and $CF=3$ are given. The perimeter of rectangle $ABCD$ is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(25,0), C=(25,70/3), D=(0,70/3), E=(8,0), F=(22,70/3), Bp=reflect(E,F)*B, Cp=reflect(E,F)*C; draw(F--D--A--E); draw(E--B--C--F, linetype("4 4")); filldraw(E--F--Cp--Bp--cycle, white, black); pair point=( 12.5, 35/3 ); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$B^\prime$", Bp, dir(point--Bp)); label("$C^\prime$", Cp, dir(point--Cp));[/asy]

2009 Iran MO (3rd Round), 1

1-Let $ \triangle ABC$ be a triangle and $ (O)$ its circumcircle. $ D$ is the midpoint of arc $ BC$ which doesn't contain $ A$. We draw a circle $ W$ that is tangent internally to $ (O)$ at $ D$ and tangent to $ BC$.We draw the tangent $ AT$ from $ A$ to circle $ W$.$ P$ is taken on $ AB$ such that $ AP \equal{} AT$.$ P$ and $ T$ are at the same side wrt $ A$.PROVE $ \angle APD \equal{} 90^\circ$.

2010 China Western Mathematical Olympiad, 2

$AB$ is a diameter of a circle with center $O$. Let $C$ and $D$ be two different points on the circle on the same side of $AB$, and the lines tangent to the circle at points $C$ and $D$ meet at $E$. Segments $AD$ and $BC$ meet at $F$. Lines $EF$ and $AB$ meet at $M$. Prove that $E,C,M$ and $D$ are concyclic.

Brazil L2 Finals (OBM) - geometry, 2009.6

Let $ ABC$ be a triangle and $ O$ its circumcenter. Lines $ AB$ and $ AC$ meet the circumcircle of $ OBC$ again in $ B_1\neq B$ and $ C_1 \neq C$, respectively, lines $ BA$ and $ BC$ meet the circumcircle of $ OAC$ again in $ A_2\neq A$ and $ C_2\neq C$, respectively, and lines $ CA$ and $ CB$ meet the circumcircle of $ OAB$ in $ A_3\neq A$ and $ B_3\neq B$, respectively. Prove that lines $ A_2A_3$, $ B_1B_3$ and $ C_1C_2$ have a common point.

2023 All-Russian Olympiad Regional Round, 11.8

Given is a triangle $ABC$ with circumcenter $O$. Points $D, E$ are chosen on the angle bisector of $\angle ABC$ such that $EA=EB, DB=DC$. If $P, Q$ are the circumcenters of $(AOE), (COD)$, prove that either the line $PQ$ coincides with $AC$ or $PQCA$ is cyclic.

2018 Israel Olympic Revenge, 3

Let $ABC$ be a triangle with circumcircle $\omega$ and circumcenter $O$. The tangent line to from $A$ to $\omega$ intersects $BC$ at $K$. The tangent line to from $B$ to $\omega$ intersects $AC$ at $L$. Let $M,N$ be the midpoints of $AK,BL$ respectively. The line $MN$ is named by $\alpha$. The feet of perpendicular from $A,B,C$ to the edges of $\triangle ABC$ are named by $D,E,F$ respectively. The perpendicular bisectors of $EF,DF,DE$ intersect $\alpha$ at $X,Y,Z$ respectively. Let $AD,BE,CF$ intersect $\omega$ again at $D',E',F'$ respectively. If $H$ is the orthocenter of $ABC$, prove that the lines $XD',YE',ZF',OH$ are concurrent.

2009 Philippine MO, 5

Segments $AC$ and $BD$ intersect at point $P$ such that $PA = PD$ and $PB = PC$. Let $E$ be the foot of the perpendicular from $P$ to the line $CD$. Prove that the line $PE$ and the perpendicular bisectors of the segments $PA$ and $PB$ are concurrent.

2006 Iran MO (3rd Round), 1

A regular polyhedron is a polyhedron that is convex and all of its faces are regular polygons. We call a regular polhedron a "[i]Choombam[/i]" iff none of its faces are triangles. a) prove that each choombam can be inscribed in a sphere. b) Prove that faces of each choombam are polygons of at most 3 kinds. (i.e. there is a set $\{m,n,q\}$ that each face of a choombam is $n$-gon or $m$-gon or $q$-gon.) c) Prove that there is only one choombam that its faces are pentagon and hexagon. (Soccer ball) [img]http://aycu08.webshots.com/image/5367/2001362702285797426_rs.jpg[/img] d) For $n>3$, a prism that its faces are 2 regular $n$-gons and $n$ squares, is a choombam. Prove that except these choombams there are finitely many choombams.

2005 China Western Mathematical Olympiad, 5

Circles $C(O_1)$ and $C(O_2)$ intersect at points $A$, $B$. $CD$ passing through point $O_1$ intersects $C(O_1)$ at point $D$ and tangents $C(O_2)$ at point $C$. $AC$ tangents $C(O_1)$ at $A$. Draw $AE \bot CD$, and $AE$ intersects $C(O_1)$ at $E$. Draw $AF \bot DE$, and $AF$ intersects $DE$ at $F$. Prove that $BD$ bisects $AF$.

1995 Abels Math Contest (Norwegian MO), 2b

Two circles of the same radii intersect in two distinct points $P$ and $Q$. A line passing through $P$, not touching any of the circles, intersects the circles again at $A$ and $B$. Prove that $Q$ lies on the perpendicular bisector of $AB$.

2004 Germany Team Selection Test, 2

Let two chords $AC$ and $BD$ of a circle $k$ meet at the point $K$, and let $O$ be the center of $k$. Let $M$ and $N$ be the circumcenters of triangles $AKB$ and $CKD$. Show that the quadrilateral $OMKN$ is a parallelogram.

1999 Austrian-Polish Competition, 8

Let $P,Q,R$ be points on the same side of a line $g$ in the plane. Let $M$ and $N$ be the feet of the perpendiculars from $P$ and $Q$ to $g$ respectively. Point $S$ lies between the lines $PM$ and $QN$ and satisfies and satisfies $PM = PS$ and $QN = QS$. The perpendicular bisectors of $SM$ and $SN$ meet in a point $R$. If the line $RS$ intersects the circumcircle of triangle $PQR$ again at $T$, prove that $S$ is the midpoint of $RT$.

2003 China Team Selection Test, 1

Triangle $ABC$ is inscribed in circle $O$. Tangent $PD$ is drawn from $A$, $D$ is on ray $BC$, $P$ is on ray $DA$. Line $PU$ ($U \in BD$) intersects circle $O$ at $Q$, $T$, and intersect $AB$ and $AC$ at $R$ and $S$ respectively. Prove that if $QR=ST$, then $PQ=UT$.