This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 111

2012 Balkan MO Shortlist, G7

$ABCD$ is a cyclic quadrilateral. The lines $AD$ and $BC$ meet at X, and the lines $AB$ and $CD$ meet at $Y$ . The line joining the midpoints $M$ and $N$ of the diagonals $AC$ and $BD$, respectively, meets the internal bisector of angle $AXB$ at $P$ and the external bisector of angle $BYC$ at $Q$. Prove that $PXQY$ is a rectangle

1960 Polish MO Finals, 3

Tags: cyclic , geometry , hexagon
On the circle 6 distinct points $ A $, $ B $, $ C $, $ D $, $ E $, $ F $ are chosen in such a way that $ AB $ is parallel to $ DE $, and $ DC $ is parallel to $ AF $. Prove that $ BC $ is parallel to $ EF $

2010 Dutch BxMO TST, 4

The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.

1981 Tournament Of Towns, (009) 3

$ABCD$ is a convex quadrilateral inscribed in a circle with centre $O$, and with mutually perpendicular diagonals. Prove that the broken line $AOC$ divides the quadrilateral into two parts of equal area. (V Varvarkin)

2012 Balkan MO Shortlist, G4

Let $M$ be the point of intersection of the diagonals of a cyclic quadrilateral $ABCD$. Let $I_1$ and $I_2$ are the incenters of triangles $AMD$ and $BMC$, respectively, and let $L$ be the point of intersection of the lines $DI_1$ and $CI_2$. The foot of the perpendicular from the midpoint $T$ of $I_1I_2$ to $CL$ is $N$, and $F$ is the midpoint of $TN$. Let $G$ and $J$ be the points of intersection of the line $LF$ with $I_1N$ and $I_1I_2$, respectively. Let $O_1$ be the circumcenter of triangle $LI_1J$, and let $\Gamma_1$ and $\Gamma_2$ be the circles with diameters $O_1L$ and $O_1J$, respectively. Let $V$ and $S$ be the second points of intersection of $I_1O_1$ with $\Gamma_1$ and $\Gamma_2$, respectively. If $K$ is point where the circles $\Gamma_1$ and $\Gamma_2$ meet again, prove that $K$ is the circumcenter of the triangle $SVG$.

2007 Bulgarian Autumn Math Competition, Problem 10.2

Let $AC>BC$ in $\triangle ABC$ and $M$ and $N$ be the midpoints of $AC$ and $BC$ respectively. The angle bisector of $\angle B$ intersects $\overline{MN}$ at $P$. The incircle of $\triangle ABC$ has center $I$ and touches $BC$ at $Q$. The perpendiculars from $P$ and $Q$ to $MN$ and $BC$ respectively intersect at $R$. Let $S=AB\cap RN$. a) Prove that $PCQI$ is cyclic b) Express the length of the segment $BS$ with $a$, $b$, $c$ - the side lengths of $\triangle ABC$ .

2015 Bulgaria National Olympiad, 1

The hexagon $ABLCDK$ is inscribed and the line $LK$ intersects the segments $AD, BC, AC$ and $BD$ in points $M, N, P$ and $Q$, respectively. Prove that $NL \cdot KP \cdot MQ = KM \cdot PN \cdot LQ$.

1997 Czech And Slovak Olympiad IIIA, 6

In a parallelogram $ABCD$, triangle $ABD$ is acute-angled and $\angle BAD = \pi /4$. Consider all possible choices of points $K,L,M,N$ on sides $AB,BC, CD,DA$ respectively, such that $KLMN$ is a cyclic quadrilateral whose circumradius equals those of triangles $ANK$ and $CLM$. Find the locus of the intersection of the diagonals of $KLMN$

1999 Ukraine Team Selection Test, 1

A triangle $ABC$ is given. Points $E,F,G$ are arbitrarily selected on the sides $AB,BC,CA$, respectively, such that $AF\perp EG$ and the quadrilateral $AEFG$ is cyclic. Find the locus of the intersection point of $AF$ and $EG$.

2006 Oral Moscow Geometry Olympiad, 1

An arbitrary triangle $ABC$ is given. Construct a line that divides it into two polygons, which have equal radii of the circumscribed circles. (L. Blinkov)

1981 All Soviet Union Mathematical Olympiad, 305

Given points $A,B,M,N$ on the circumference. Two chords $[MA_1]$ and $[MA_2]$ are orthogonal to lines $(NA)$ and $(NB)$ respectively. Prove that $(AA_1)$ and $(BB_1)$ lines are parallel.

1934 Eotvos Mathematical Competition, 2

Which polygon inscribed in a given circle has the property that the sum of the squares of the lengths of its sides is maximum?

2003 Estonia National Olympiad, 3

Let $ABC$ be a triangle and $A_1, B_1, C_1$ points on $BC, CA, AB$, respectively, such that the lines $AA_1, BB_1, CC_1$ meet at a single point. It is known that $A, B_1, A_1, B$ are concyclic and $B, C_1, B_1, C$ are concyclic. Prove that a) $C, A_1, C_1, A$ are concyclic, b) $AA_1,, BB_1, CC_1$ are the heights of $ABC$.

EGMO 2017, 1

Let $ABCD$ be a convex quadrilateral with $\angle DAB=\angle BCD=90^{\circ}$ and $\angle ABC> \angle CDA$. Let $Q$ and $R$ be points on segments $BC$ and $CD$, respectively, such that line $QR$ intersects lines $AB$ and $AD$ at points $P$ and $S$, respectively. It is given that $PQ=RS$.Let the midpoint of $BD$ be $M$ and the midpoint of $QR$ be $N$.Prove that the points $M,N,A$ and $C$ lie on a circle.

2021 ELMO Problems, 1

In $\triangle ABC$, points $P$ and $Q$ lie on sides $AB$ and $AC$, respectively, such that the circumcircle of $\triangle APQ$ is tangent to $BC$ at $D$. Let $E$ lie on side $BC$ such that $BD = EC$. Line $DP$ intersects the circumcircle of $\triangle CDQ$ again at $X$, and line $DQ$ intersects the circumcircle of $\triangle BDP$ again at $Y$. Prove that $D$, $E$, $X$, and $Y$ are concyclic.

2004 Abels Math Contest (Norwegian MO), 3

Tags: area , geometry , cyclic
In a quadrilateral $ABCD$ with $\angle A = 60^o, \angle B = 90^o, \angle C = 120^o$, the point $M$ of intersection of the diagonals satisfies $BM = 1$ and $MD = 2$. (a) Prove that the vertices of $ABCD$ lie on a circle and find the radius of that circle. (b) Find the area of quadrilateral $ABCD$.

2014 Saudi Arabia Pre-TST, 4.4

Let $\vartriangle ABC$ be an acute triangle, with $\angle A> \angle B \ge \angle C$. Let $D, E$ and $F$ be the tangency points between the incircle of triangle and sides $BC, CA, AB$, respectively. Let $J$ be a point on $(BD)$, $K$ a point on $(DC)$, $L$ a point on $(EC)$ and $M$ a point on $(FB)$, such that $$AF = FM = JD = DK = LE = EA.$$Let $P$ be the intersection point between $AJ$ and $KM$ and let $Q$ be the intersection point between $AK$ and $JL$. Prove that $PJKQ$ is cyclic.

2013 Ukraine Team Selection Test, 6

Six different points $A, B, C, D, E, F$ are marked on the plane, no four of them lie on one circle and no two segments with ends at these points lie on parallel lines. Let $P, Q,R$ be the points of intersection of the perpendicular bisectors to pairs of segments $(AD, BE)$, $(BE, CF)$ ,$(CF, DA)$ respectively, and $P', Q' ,R'$ are points the intersection of the perpendicular bisectors to the pairs of segments $(AE, BD)$, $(BF, CE)$ , $(CA, DF)$ respectively. Show that $P \ne P', Q \ne Q', R \ne R'$, and prove that the lines $PP', QQ'$ and $RR'$ intersect at one point or are parallel.

2009 Brazil Team Selection Test, 1

Let $A, B, C, D, E$ points in circle of radius r, in that order, such that $AC = BD = CE = r$. The points $H_1, H_2, H_3$ are the orthocenters of the triangles $ACD$, $BCD$ and $BCE$, respectively. Prove that $H_1H_2H_3$ is a right triangle .

2013 Czech-Polish-Slovak Junior Match, 3

The $ABCDE$ pentagon is inscribed in a circle and $AB = BC = CD$. Segments $AC$ and $BE$ intersect at $K$, and Segments $AD$ and $CE$ intersect at point$ L$. Prove that $AK = KL$.

1975 Chisinau City MO, 89

Tags: circles , cyclic , geometry
A closed line on a plane is such that any quadrangle inscribed in it has the sum of opposite angles equal to $180^o$. Prove that this line is a circle.

1976 Chisinau City MO, 122

The diagonals of some convex quadrilateral are mutually perpendicular and divide the quadrangle into $4$ triangles, the areas of which are expressed by prime numbers. Prove that a circle can be inscribed in this quadrilateral.

2017 Thailand Mathematical Olympiad, 2

A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.

2019 Tournament Of Towns, 5

The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is a) tangential (circumscribed), b) cyclic (inscribed). (Nairi Sedrakyan)

1996 Swedish Mathematical Competition, 4

The angles at $A,B,C,D,E$ of a pentagon $ABCDE$ inscribed in a circle form an increasing sequence. Show that the angle at $C$ is greater than $\pi/2$, and that this lower bound cannot be improved.