This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 111

2006 Estonia Team Selection Test, 2

The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.

2009 Brazil Team Selection Test, 1

Let $A, B, C, D, E$ points in circle of radius r, in that order, such that $AC = BD = CE = r$. The points $H_1, H_2, H_3$ are the orthocenters of the triangles $ACD$, $BCD$ and $BCE$, respectively. Prove that $H_1H_2H_3$ is a right triangle .

Brazil L2 Finals (OBM) - geometry, 2010.5

The diagonals of an cyclic quadrilateral $ABCD$ intersect at $O$. The circumcircles of triangle $AOB$ and $COD$ intersect lines $BC$ and $AD$, for the second time, at points $M, N, P$and $Q$. Prove that the $MNPQ$ quadrilateral is inscribed in a circle of center $O$.

1981 All Soviet Union Mathematical Olympiad, 305

Given points $A,B,M,N$ on the circumference. Two chords $[MA_1]$ and $[MA_2]$ are orthogonal to lines $(NA)$ and $(NB)$ respectively. Prove that $(AA_1)$ and $(BB_1)$ lines are parallel.

2015 Costa Rica - Final Round, 1

Let $ABCD$ be a quadrilateral whose diagonals are perpendicular, and let $S$ be the intersection of those diagonals. Let $K, L, M$ and $N$ be the reflections of $S$ on the sides $AB$, $BC$, $CD$ and $DA$ respectively. $BN$ cuts the circumcircle of $\vartriangle SKN$ at $E$ and $BM$ cuts the circumcircle of $\vartriangle SLM$ at $F$. Prove that the quadrilateral $EFLK$ is cyclic.

2021 Kurschak Competition, 3

Let $A_1B_3A_2B_1A_3B_2$ be a cyclic hexagon such that $A_1B_1,A_2B_2,A_3B_3$ intersect at one point. Let $C_1=A_1B_1\cap A_2A_3,C_2=A_2B_2\cap A_1A_3,C_3=A_3B_3\cap A_1A_2$. Let $D_1$ be the point on the circumcircle of the hexagon such that $C_1B_1D_1$ touches $A_2A_3$. Define $D_2,D_3$ analogously. Show that $A_1D_1,A_2D_2,A_3D_3$ meet at one point.

1997 Belarusian National Olympiad, 1

Different points $A_1,A_2,A_3,A_4,A_5$ lie on a circle so that $A_1A_2 = A_2A_3 = A_3A_4 =A_4A_5$. Let $A_6$ be the diametrically opposite point to $A_2$, and $A_7$ be the intersection of $A_1A_5$ and $A_3A_6$. Prove that the lines $A_1A_6$ and $A_4A_7$ are perpendicular

2007 Bulgarian Autumn Math Competition, Problem 10.2

Let $AC>BC$ in $\triangle ABC$ and $M$ and $N$ be the midpoints of $AC$ and $BC$ respectively. The angle bisector of $\angle B$ intersects $\overline{MN}$ at $P$. The incircle of $\triangle ABC$ has center $I$ and touches $BC$ at $Q$. The perpendiculars from $P$ and $Q$ to $MN$ and $BC$ respectively intersect at $R$. Let $S=AB\cap RN$. a) Prove that $PCQI$ is cyclic b) Express the length of the segment $BS$ with $a$, $b$, $c$ - the side lengths of $\triangle ABC$ .

2017 Thailand Mathematical Olympiad, 2

A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.

2000 IMO Shortlist, 4

Let $ A_1A_2 \ldots A_n$ be a convex polygon, $ n \geq 4.$ Prove that $ A_1A_2 \ldots A_n$ is cyclic if and only if to each vertex $ A_j$ one can assign a pair $ (b_j, c_j)$ of real numbers, $ j = 1, 2, \ldots, n,$ so that $ A_iA_j = b_jc_i - b_ic_j$ for all $ i, j$ with $ 1 \leq i < j \leq n.$

2007 Abels Math Contest (Norwegian MO) Final, 2

The vertices of a convex pentagon $ABCDE$ lie on a circle $\gamma_1$. The diagonals $AC , CE, EB, BD$, and $DA$ are tangents to another circle $\gamma_2$ with the same centre as $\gamma_1$. (a) Show that all angles of the pentagon $ABCDE$ have the same size and that all edges of the pentagon have the same length. (b) What is the ratio of the radii of the circles $\gamma_1$ and $\gamma_2$? (The answer should be given in terms of integers, the four basic arithmetic operations and extraction of roots only.)

2012 Balkan MO Shortlist, G7

$ABCD$ is a cyclic quadrilateral. The lines $AD$ and $BC$ meet at X, and the lines $AB$ and $CD$ meet at $Y$ . The line joining the midpoints $M$ and $N$ of the diagonals $AC$ and $BD$, respectively, meets the internal bisector of angle $AXB$ at $P$ and the external bisector of angle $BYC$ at $Q$. Prove that $PXQY$ is a rectangle

2019 Tournament Of Towns, 5

The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is a) tangential (circumscribed), b) cyclic (inscribed). (Nairi Sedrakyan)

1972 All Soviet Union Mathematical Olympiad, 167

The $7$-gon $A_1A_2A_3A_4A_5A_6A_7$ is inscribed in a circle. Prove that if the centre of the circle is inside the $7$-gon , than $$\angle A_1+ \angle A_2 + \angle A_3 < 450^o$$

EGMO 2017, 1

Let $ABCD$ be a convex quadrilateral with $\angle DAB=\angle BCD=90^{\circ}$ and $\angle ABC> \angle CDA$. Let $Q$ and $R$ be points on segments $BC$ and $CD$, respectively, such that line $QR$ intersects lines $AB$ and $AD$ at points $P$ and $S$, respectively. It is given that $PQ=RS$.Let the midpoint of $BD$ be $M$ and the midpoint of $QR$ be $N$.Prove that the points $M,N,A$ and $C$ lie on a circle.

2006 Tournament of Towns, 4

Given triangle $ABC, BC$ is extended beyond $B$ to the point $D$ such that $BD = BA$. The bisectors of the exterior angles at vertices $B$ and $C$ intersect at the point $M$. Prove that quadrilateral $ADMC$ is cyclic. (4)

2008 Estonia Team Selection Test, 2

Let $ABCD$ be a cyclic quadrangle whose midpoints of diagonals $AC$ and $BD$ are $F$ and $G$, respectively. a) Prove the following implication: if the bisectors of angles at $B$ and $D$ of the quadrangle intersect at diagonal $AC$ then $\frac14 \cdot |AC| \cdot |BD| = | AG| \cdot |BF| \cdot |CG| \cdot |DF|$. b) Does the converse implication also always hold?

Croatia MO (HMO) - geometry, 2023.3

Tags: geometry , hexagon , cyclic
A convex hexagon $ABCDEF$ is given, with each two opposite sides of different lengths and parallel ($AB \parallel DE$, $BC \parallel EF$ and $CD \parallel FA$). If $|AE| = |BD|$ and $|BF| = |CE|$, prove that the hexagon $ABCDEF$ is cyclic.

1974 Czech and Slovak Olympiad III A, 5

Let $ABCDEF$ be a cyclic hexagon such that \[AB=BC,\quad CD=DE,\quad EF=FA.\] Show that \[[ACE]\le[BDF]\] and determine when the equality holds. ($[XYZ]$ denotes the area of the triangle $XYZ.$)

Estonia Open Senior - geometry, 2001.2.3

Let us call a convex hexagon $ABCDEF$ [i]boring [/i] if $\angle A+ \angle C + \angle E = \angle B + \angle D + \angle F$. a) Is every cyclic hexagon boring? b) Is every boring hexagon cyclic?

2002 Estonia Team Selection Test, 4

Let $ABCD$ be a cyclic quadrilateral such that $\angle ACB = 2\angle CAD$ and $\angle ACD = 2\angle BAC$. Prove that $|CA| = |CB| + |CD|$.

2009 Postal Coaching, 2

Let $n \ge 4$ be an integer. Find the maximum value of the area of a $n$-gon which is inscribed in the circle of radius $1$ and has two perpendicular diagonals.

1999 Singapore MO Open, 4

Let $ABCD$ be a quadrilateral with each interior angle less than $180^o$. Show that if $A, B, C, D$ do not lie on a circle, then $AB \cdot CD + AD\cdot BC > AC \cdot BD$

1969 Poland - Second Round, 3

Given a quadrilateral $ ABCD $ inscribed in a circle. The images of the points $ A $ and $ C $ in symmetry with respect to the line $ BD $ are the points $ A' $ and $ C' $, respectively, and the images of the points $ B $ and $ D $ in symmetry with respect to the line $ AC $ are the points $ B'$ and $D'$ respectively. Prove that the points $ A' $, $ B' $, $ C' $, $ D' $ lie on the circle.

2019 Regional Competition For Advanced Students, 2

The convex pentagon $ABCDE$ is cyclic and $AB = BD$. Let point $P$ be the intersection of the diagonals $AC$ and $BE$. Let the straight lines $BC$ and $DE$ intersect at point $Q$. Prove that the straight line $PQ$ is parallel to the diagonal $AD$.