Found problems: 25757
1972 IMO Longlists, 28
The lengths of the sides of a rectangle are given to be odd integers. Prove that there does not exist a point within that rectangle that has integer distances to each of its four vertices.
2005 Sharygin Geometry Olympiad, 15
Given a circle centered at the origin.
Prove that there is a circle of smaller radius that has no less points with integer coordinates.
2018 China Northern MO, 1
In triangle $ABC$, let the circumcenter, incenter, and orthocenter be $O$, $I$, and $H$ respectively. Segments $AO$, $AI$, and $AH$ intersect the circumcircle of triangle $ABC$ at $D$, $E$, and $F$. $CD$ intersects $AE$ at $M$ and $CE$ intersects $AF$ at $N$. Prove that $MN$ is parallel to $BC$.
1988 IMO Longlists, 71
The quadrilateral $A_1A_2A_3A_4$ is cyclic, and its sides are $a_1 = A_1A_2, a_2 = A_2A_3, a_3 = A_3A_4$ and $a_4 = A_4A_1.$ The respective circles with centres $I_i$ and radii $r_i$ are tangent externally to each side $a_i$ and to the sides $a_{i+1}$ and $a_{i-1}$ extended. ($a_0 = a_4$). Show that \[ \prod^4_{i=1} \frac{a_i}{r_i} = 4 \cdot (\csc (A_1) + \csc (A_2) )^2. \]
Russian TST 2019, P2
Let $ABC$ be a triangle with circumcircle $\Omega$ and incentre $I$. A line $\ell$ intersects the lines $AI$, $BI$, and $CI$ at points $D$, $E$, and $F$, respectively, distinct from the points $A$, $B$, $C$, and $I$. The perpendicular bisectors $x$, $y$, and $z$ of the segments $AD$, $BE$, and $CF$, respectively determine a triangle $\Theta$. Show that the circumcircle of the triangle $\Theta$ is tangent to $\Omega$.
Cono Sur Shortlist - geometry, 1993.12
Given $4$ lines in the plane such that there are not $2$ parallel to each other or no $3$ concurrent, we consider the following $ 8$ segments: in each line we have $2$ consecutive segments determined by the intersections with the other three lines.
Prove that:
a) The lengths of the $ 8$ segments cannot be the numbers $1, 2, 3,4, 5, 6, 7, 8$ in some order.
b) The lengths of the $ 8$ segments can be $ 8$ different integers.
2005 Czech-Polish-Slovak Match, 5
Given a convex quadrilateral $ABCD$, find the locus of the points $P$ inside the quadrilateral such that
\[S_{PAB}\cdot S_{PCD} = S_{PBC}\cdot S_{PDA}\]
(where $S_X$ denotes the area of triangle $X$).
2010 Today's Calculation Of Integral, 655
Find the area of the region of the points such that the total of three tangent lines can be drawn to two parabolas $y=x-x^2,\ y=a(x-x^2)\ (a\geq 2)$ in such a way that there existed the points of tangency in the first quadrant.
2013 BMT Spring, 1
A rectangle with sides $a$ and $b$ has an area of $24$ and a diagonal of length $11$. Find the perimeter of this rectangle.
2011 AMC 8, 7
Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially [b]bolded[/b]. What percent of the total area is partially bolded?
[asy]
import graph; size(7.01cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-0.42,xmax=14.59,ymin=-10.08,ymax=5.26;
pair A=(0,0), B=(4,0), C=(0,4), D=(4,4), F=(2,0), G=(3,0), H=(1,4), I=(2,4), J=(3,4), K=(0,-2), L=(4,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6), F_1=(10,-6), G_1=(6,-4), H_1=(10,-4), I_1=(8,-2), J_1=(8,-6), K_1=(8,-4);
draw(C--H--(1,0)--A--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6));
draw(C--D); draw(D--B); draw(B--A); draw(A--C); draw(H--(1,0)); draw(I--F); draw(J--G); draw(C--H,linewidth(1.6)); draw(H--(1,0),linewidth(1.6)); draw((1,0)--A,linewidth(1.6)); draw(A--C,linewidth(1.6)); draw(K--L); draw((4,-6)--L); draw((4,-6)--M); draw(M--K); draw(O--P); draw(Q--R); draw(O--Q); draw(M--O,linewidth(1.6)); draw(O--Q,linewidth(1.6)); draw(Q--R,linewidth(1.6)); draw(R--M,linewidth(1.6)); draw(T--V); draw(V--U); draw(U--(6,0)); draw((6,0)--T); draw((6,2)--Z); draw(A_1--B_1); draw(A_1--Z); draw(A_1--V,linewidth(1.6)); draw(V--Z,linewidth(1.6)); draw(Z--A_1,linewidth(1.6)); draw(C_1--D_1); draw(D_1--F_1); draw(F_1--E_1); draw(E_1--C_1); draw(G_1--H_1); draw(I_1--J_1); draw(G_1--K_1,linewidth(1.6)); draw(K_1--J_1,linewidth(1.6)); draw(J_1--E_1,linewidth(1.6)); draw(E_1--G_1,linewidth(1.6));
dot(A,linewidth(1pt)+ds); dot(B,linewidth(1pt)+ds); dot(C,linewidth(1pt)+ds); dot(D,linewidth(1pt)+ds); dot((1,0),linewidth(1pt)+ds); dot(F,linewidth(1pt)+ds); dot(G,linewidth(1pt)+ds); dot(H,linewidth(1pt)+ds); dot(I,linewidth(1pt)+ds); dot(J,linewidth(1pt)+ds); dot(K,linewidth(1pt)+ds); dot(L,linewidth(1pt)+ds); dot(M,linewidth(1pt)+ds); dot((4,-6),linewidth(1pt)+ds); dot(O,linewidth(1pt)+ds); dot(P,linewidth(1pt)+ds); dot(Q,linewidth(1pt)+ds); dot(R,linewidth(1pt)+ds); dot((6,0),linewidth(1pt)+ds); dot(T,linewidth(1pt)+ds); dot(U,linewidth(1pt)+ds); dot(V,linewidth(1pt)+ds); dot((6,2),linewidth(1pt)+ds); dot(Z,linewidth(1pt)+ds); dot(A_1,linewidth(1pt)+ds); dot(B_1,linewidth(1pt)+ds); dot(C_1,linewidth(1pt)+ds); dot(D_1,linewidth(1pt)+ds); dot(E_1,linewidth(1pt)+ds); dot(F_1,linewidth(1pt)+ds); dot(G_1,linewidth(1pt)+ds); dot(H_1,linewidth(1pt)+ds); dot(I_1,linewidth(1pt)+ds); dot(J_1,linewidth(1pt)+ds); dot(K_1,linewidth(1pt)+ds);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
$ \textbf{(A)}12\frac 12\qquad\textbf{(B)}20\qquad\textbf{(C)}25\qquad\textbf{(D)}33 \frac 13\qquad\textbf{(E)}37\frac 12 $
2011 Uzbekistan National Olympiad, 3
In acute triangle $ABC$ $AD$ is bisector. $O$ is circumcenter, $H$ is orthocenter. If $AD=AC$ and $AC\perp OH$ . Find all of the value of $\angle ABC$ and $\angle ACB$.
2009 AIME Problems, 15
In triangle $ ABC$, $ AB \equal{} 10$, $ BC \equal{} 14$, and $ CA \equal{} 16$. Let $ D$ be a point in the interior of $ \overline{BC}$. Let $ I_B$ and $ I_C$ denote the incenters of triangles $ ABD$ and $ ACD$, respectively. The circumcircles of triangles $ BI_BD$ and $ CI_CD$ meet at distinct points $ P$ and $ D$. The maximum possible area of $ \triangle BPC$ can be expressed in the form $ a\minus{}b\sqrt{c}$, where $ a$, $ b$, and $ c$ are positive integers and $ c$ is not divisible by the square of any prime. Find $ a\plus{}b\plus{}c$.
2011 China Team Selection Test, 1
In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.
2011 Sharygin Geometry Olympiad, 6
Let $BB_1$ and $CC_1$ be the altitudes of acute-angled triangle $ABC$, and $A_0$ is the midpoint of $BC$. Lines $A_0B_1$ and $A_0C_1$ meet the line passing through $A$ and parallel to $BC$ in points $P$ and $Q$. Prove that the incenter of triangle $PA_0Q$ lies on the altitude of triangle $ABC$.
2023 Austrian Junior Regional Competition, 2
Let $ABCDEF$ be a regular hexagon with sidelength s. The points $P$ and $Q$ are on the diagonals $BD$ and $DF$, respectively, such that $BP = DQ = s$. Prove that the three points $C$, $P$ and $Q$ are on a line.
[i](Walther Janous)[/i]
1987 IMO, 2
In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.
2018 AMC 8, 4
The twelve-sided figure shown has been drawn on $1 \text{ cm}\times 1 \text{ cm}$ graph paper. What is the area of the figure in $\text{cm}^2$?
[asy]
unitsize(8mm);
for (int i=0; i<7; ++i) {
draw((i,0)--(i,7),gray);
draw((0,i+1)--(7,i+1),gray);
}
draw((1,3)--(2,4)--(2,5)--(3,6)--(4,5)--(5,5)--(6,4)--(5,3)--(5,2)--(4,1)--(3,2)--(2,2)--cycle,black+2bp);
[/asy]
$\textbf{(A) } 12 \qquad \textbf{(B) } 12.5 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 13.5 \qquad \textbf{(E) } 14$
2018 India Regional Mathematical Olympiad, 6
Let $ABC$ be an acute-angled triangle with $AB<AC$. Let $I$ be the incentre of triangle $ABC$, and let $D,E,F$ be the points where the incircle touches the sides $BC,CA,AB,$ respectively. Let $BI,CI$ meet the line $EF$ at $Y,X$ respectively. Further assume that both $X$ and $Y$ are outside the triangle $ABC$. Prove that
$\text{(i)}$ $B,C,Y,X$ are concyclic.
$\text{(ii)}$ $I$ is also the incentre of triangle $DYX$.
2012 Today's Calculation Of Integral, 787
Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$.
Answer the following questions:
(1) Illustrate $F$.
(2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.
2009 ISI B.Stat Entrance Exam, 5
A cardboard box in the shape of a rectangular parallelopiped is to be enclosed in a cylindrical container with a hemispherical lid. If the total height of the container from the base to the top of the lid is $60$ centimetres and its base has radius $30$ centimetres, find the volume of the largest box that can be completely enclosed inside the container with the lid on.
1978 All Soviet Union Mathematical Olympiad, 253
Given a quadrangle $ABCD$ and a point $M$ inside it such that $ABMD$ is a parallelogram. $ \angle CBM = \angle CDM$. Prove that the $ \angle ACD = \angle BCM$.
2021 Stanford Mathematics Tournament, 1
A paper rectangle $ABCD$ has $AB = 8$ and $BC = 6$. After corner $B$ is folded over diagonal $AC$, what is $BD$?
2021 Belarusian National Olympiad, 8.3
The incircle of the triangle $ABC$ is tangent to $BC$,$CA$ and $AB$ at $A_1$,$B_1$ and $C_1$ respectively. In triangles $AB_1C_1$, $BC_1A_1$ and $CB_1A_1$ points $H_1$,$H_2$ and $H_3$ are orthocenters.
Prove that the triangles $A_1B_1C_1$ and $H_1H_2H_3$ are equal.
2015 BMT Spring, Tie 3
The permutohedron of order $3$ is the hexagon determined by points $(1, 2, 3)$, $(1, 3, 2)$, $(2, 1, 3)$, $(2, 3, 1)$, $(3, 1, 2)$, and $(3, 2, 1)$. The pyramid determined by these six points and the origin has a unique inscribed sphere of maximal volume. Determine its radius.
1996 Singapore Team Selection Test, 1
Let $P$ be a point on the side $AB$ of a square $ABCD$ and $Q$ a point on the side $BC$. Let $H$ be the foot of the perpendicular from $B$ to $PC$. Suppose that $BP = BQ$. Prove that $QH$ is perpendicular to $HD$.