This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2006 Sharygin Geometry Olympiad, 12

In the triangle $ABC$, the bisector of angle $A$ is equal to the half-sum of the height and median drawn from vertex $A$. Prove that if $\angle A$ is obtuse, then $AB = AC$.

1997 Korea National Olympiad, 5

Let $a,b,c$ be the side lengths of any triangle $\triangle ABC$ opposite to $A,B$ and $C,$ respectively. Let $x,y,z$ be the length of medians from $A,B$ and $C,$ respectively. If $T$ is the area of $\triangle ABC$, prove that $\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\sqrt{\sqrt{3}T}$

May Olympiad L2 - geometry, 2012.3

Given Triangle $ABC$, $\angle B= 2 \angle C$, and $\angle A>90^\circ$. Let $M$ be midpoint of $BC$. Perpendicular of $AC$ at $C$ intersects $AB$ at $D$. Show $\angle AMB = \angle DMC$ [hide]If possible, don't use projective geometry[/hide]

Ukraine Correspondence MO - geometry, 2019.7

Given a triangle $ABC$. Construct a point $D$ on the side $AB$ and point $E$ on the side $AC$ so that $BD = CE$ and $\angle ADC = \angle BEC$

2021 AIME Problems, 13

Circles $\omega_1$ and $\omega_2$ with radii $961$ and $625$, respectively, intersect at distinct points $A$ and $B$. A third circle $\omega$ is externally tangent to both $\omega_1$ and $\omega_2$. Suppose line $AB$ intersects $\omega$ at two points $P$ and $Q$ such that the measure of minor arc $\widehat{PQ}$ is $120^{\circ}$. Find the distance between the centers of $\omega_1$ and $\omega_2$.

2022 Mexican Girls' Contest, 1

Let $ABCD$ be a quadrilateral, $E$ the midpoint of side $BC$, and $F$ the midpoint of side $AD$. Segment $AC$ intersects segment $BF$ at $M$ and segment $DE$ at $N$. If quadrilateral $MENF$ is also known to be a parallelogram, prove that $ABCD$ is also a parallelogram.

2005 Romania Team Selection Test, 1

Tags: geometry
Prove that in any convex polygon with $4n+2$ sides ($n\geq 1$) there exist two consecutive sides which form a triangle of area at most $\frac 1{6n}$ of the area of the polygon.

2010 AMC 12/AHSME, 18

A 16-step path is to go from $ ( \minus{} 4, \minus{}4)$ to $ (4,4)$ with each step increasing either the $x$-coordinate or the $y$-coordinate by 1. How many such paths stay outside or on the boundary of the square $ \minus{} 2 \le x \le 2$, $ \minus{} 2 \le y \le 2$ at each step? $ \textbf{(A)}\ 92 \qquad \textbf{(B)}\ 144 \qquad \textbf{(C)}\ 1568 \qquad \textbf{(D)}\ 1698 \qquad \textbf{(E)}\ 12,\!800$

2006 MOP Homework, 4

Let $ABC$ be a right triangle with$ \angle A = 90^o$. Point $D$ lies on side $BC$ such that $\angle BAD = \angle CAD$. Point $I_a$ is the excenter of the triangle opposite $A$. Prove that $\frac{AD}{DI_a } \le \sqrt{2} -1$

2010 Sharygin Geometry Olympiad, 3

Points $A', B', C'$ lie on sides $BC, CA, AB$ of triangle $ABC.$ for a point $X$ one has $\angle AXB =\angle A'C'B' + \angle ACB$ and $\angle BXC = \angle B'A'C' +\angle BAC.$ Prove that the quadrilateral $XA'BC'$ is cyclic.

2022 All-Russian Olympiad, 8

Tags: geometry
A circle $\omega$ is inscribed in triangle $ABC$, tangent to the side $BC$ at point $K$. Circle $\omega'$ is symmetrical to the circle $\omega$ with respect to point $A$. The point $A_0$ is chosen so that the segments $BA_0$ and $CA_0$ touch $\omega'$. Let $M$ be the midpoint of side $BC$. Prove that the line $AM$ bisects the segment $KA_0$.

2015 Lusophon Mathematical Olympiad, 5

Two circles of radius $R$ and $r$, with $R>r$, are tangent to each other externally. The sides adjacent to the base of an isosceles triangle are common tangents to these circles. The base of the triangle is tangent to the circle of the greater radius. Determine the length of the base of the triangle.

2011 IFYM, Sozopol, 3

In a triangle $ABC$ a circle $k$ is inscribed, which is tangent to $BC$,$CA$,$AB$ in points $D,E,F$ respectively. Let point $P$ be inner for $k$. If the lines $DP$,$EP$,$FP$ intersect $k$ in points $D',E',F'$ respectively, then prove that $AD'$, $BE'$, and $CF'$ are concurrent.

2003 Croatia National Olympiad, Problem 3

In a tetrahedron $ABCD$, all angles at vertex $D$ are equal to $\alpha$ and all dihedral angles between faces having $D$ as a vertex are equal to $\phi$. Prove that there exists a unique $\alpha$ for which $\phi=2\alpha$.

1988 IMO Shortlist, 6

In a given tedrahedron $ ABCD$ let $ K$ and $ L$ be the centres of edges $ AB$ and $ CD$ respectively. Prove that every plane that contains the line $ KL$ divides the tedrahedron into two parts of equal volume.

2009 USAMO, 3

We define a [i]chessboard polygon[/i] to be a polygon whose sides are situated along lines of the form $ x \equal{} a$ or $ y \equal{} b$, where $ a$ and $ b$ are integers. These lines divide the interior into unit squares, which are shaded alternately grey and white so that adjacent squares have different colors. To tile a chessboard polygon by dominoes is to exactly cover the polygon by non-overlapping $ 1 \times 2$ rectangles. Finally, a [i]tasteful tiling[/i] is one which avoids the two configurations of dominoes shown on the left below. Two tilings of a $ 3 \times 4$ rectangle are shown; the first one is tasteful, while the second is not, due to the vertical dominoes in the upper right corner. [asy]size(300); pathpen = linewidth(2.5); void chessboard(int a, int b, pair P){ for(int i = 0; i < a; ++i) for(int j = 0; j < b; ++j) if((i+j) % 2 == 1) fill(shift(P.x+i,P.y+j)*unitsquare,rgb(0.6,0.6,0.6)); D(P--P+(a,0)--P+(a,b)--P+(0,b)--cycle); } chessboard(2,2,(2.5,0));fill(unitsquare,rgb(0.6,0.6,0.6));fill(shift(1,1)*unitsquare,rgb(0.6,0.6,0.6)); chessboard(4,3,(6,0)); chessboard(4,3,(11,0)); MP("\mathrm{Distasteful\ tilings}",(2.25,3),fontsize(12)); /* draw lines */ D((0,0)--(2,0)--(2,2)--(0,2)--cycle); D((1,0)--(1,2)); D((2.5,1)--(4.5,1)); D((7,0)--(7,2)--(6,2)--(10,2)--(9,2)--(9,0)--(9,1)--(7,1)); D((8,2)--(8,3)); D((12,0)--(12,2)--(11,2)--(13,2)); D((13,1)--(15,1)--(14,1)--(14,3)); D((13,0)--(13,3));[/asy] a) Prove that if a chessboard polygon can be tiled by dominoes, then it can be done so tastefully. b) Prove that such a tasteful tiling is unique.

Mathley 2014-15, 1

Tags: circles , geometry , fixed
Let $ABC$ be an acute triangle inscribed in a circle $(O)$ that is fixed, and two of the vertices $B$, $C$ are fixed while vertex $A$ varies on the circumference of the circle. Let $I$ be the center of the incircle, and $AD$ the angle bisector. Let $K$, $L$ be the circumcenters of $CAD$, $ABD$. A line through $O$ parallel to $DL$, $DK$ intersects the line that is through $I$ perpendicular to $IB$, $IC$ at $M$, $N$ respectively. Prove that $MN$ is tangent to a fixed circle when $A$ varies on the circle $(O)$. Tran Quang Hung, Natural Science High School, National University, Hanoi

2018 Yasinsky Geometry Olympiad, 5

The inscribed circle of the triangle $ABC$ touches its sides $AB, BC, CA$, at points $K,N, M$ respectively. It is known that $\angle ANM = \angle CKM$. Prove that the triangle $ABC$ is isosceles. (Vyacheslav Yasinsky)

2009 AMC 12/AHSME, 22

A regular octahedron has side length $ 1$. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $ \frac {a\sqrt {b}}{c}$, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ b$ is not divisible by the square of any prime. What is $ a \plus{} b \plus{} c$? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\qquad \textbf{(E)}\ 14$

2007 Greece JBMO TST, 3

Let $ABCD$ be a rectangle with $AB=a >CD =b$. Given circles $(K_1,r_1) , (K_2,r_2)$ with $r_1<r_2$ tangent externally at point $K$ and also tangent to the sides of the rectangle, circle $(K_1,r_1)$ tangent to both $AD$ and $AB$, circle $(K_2,r_2)$ tangent to both $AB$ and $BC$. Let also the internal common tangent of those circles pass through point $D$. (i) Express sidelengths $a$ and $b$ in terms of $r_1$ and $r_2$. (ii) Calculate the ratios $\frac{r_1}{r_2}$ and $\frac{a}{b}$ . (iii) Find the length of $DK$ in terms of $r_1$ and $r_2$.

2014 Costa Rica - Final Round, 1

Consider the following figure where $AC$ is tangent to the circle of center $O$, $\angle BCD = 35^o$, $\angle BAD = 40^o$ and the measure of the minor arc $DE$ is $70^o$. Prove that points $B, O, E$ are collinear. [img]https://cdn.artofproblemsolving.com/attachments/4/0/fd5f8d3534d9d0676deebd696d174999c2ad75.png[/img]

2011 ELMO Shortlist, 4

Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$. [i]Calvin Deng.[/i]

1996 IMC, 6

Tags: geometry , topology
Upper content of a subset $E$ of the plane $\mathbb{R}^{2}$ is defined as $$\mathcal{C}(E)=\inf\{\sum_{i=1}^{n} \text{diam}(E_{i})\}$$ where $\inf$ is taken over all finite families of sets $E_{1},\dots,E_{n}$ $n\in \mathbb{N}$, in $\mathbb{R}^{2}$ such that $E\subset \bigcup_{i=1}^{n}E_{i}$. Lower content of $E$ is defined as $$\mathcal{K}(E)=\sup\{\text{length}(L) |\, L \text{ is a closed line segment onto which $E$ can be contracted}\}$$. Prove that i) $\mathcal{C}(L)=\text{length}(L)$ if $L$ is a closed line segment; ii) $\mathcal{C}(E) \geq \mathcal{K}(E)$; iii) the equality in ii) is not always true even if $E$ is compact.

1987 China Team Selection Test, 1

Given a convex figure in the Cartesian plane that is symmetric with respect of both axis, we construct a rectangle $A$ inside it with maximum area (over all posible rectangles). Then we enlarge it with center in the center of the rectangle and ratio lamda such that is covers the convex figure. Find the smallest lamda such that it works for all convex figures.

2013 China Team Selection Test, 2

Let $P$ be a given point inside the triangle $ABC$. Suppose $L,M,N$ are the midpoints of $BC, CA, AB$ respectively and \[PL: PM: PN= BC: CA: AB.\] The extensions of $AP, BP, CP$ meet the circumcircle of $ABC$ at $D,E,F$ respectively. Prove that the circumcentres of $APF, APE, BPF, BPD, CPD, CPE$ are concyclic.