This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 412

2016 Sharygin Geometry Olympiad, 3

A trapezoid $ABCD$ and a line $\ell$ perpendicular to its bases $AD$ and $BC$ are given. A point $X$ moves along $\ell$. The perpendiculars from $A$ to $BX$ and from $D$ to $CX$ meet at point $Y$ . Find the locus of $Y$ . by D.Prokopenko

2020 Final Mathematical Cup, 4

Let $ABC$ be a triangle such that $\measuredangle BAC = 60^{\circ}$. Let $D$ and $E$ be the feet of the perpendicular from $A$ to the bisectors of the external angles of $B$ and $C$ in triangle $ABC$, respectively. Let $O$ be the circumcenter of the triangle $ABC$. Prove that circumcircle of the triangle $BOC$ has exactly one point in common with the circumcircle of $ADE$.

Durer Math Competition CD Finals - geometry, 2015.D1

From all three vertices of triangle $ABC$, we set perpendiculars to the exterior and interior of the other vertices angle bisectors. Prove that the sum of the squares of the segments thus obtained is exactly $2 (a^2 + b^2 + c^2)$, where $a, b$, and $c$ denote the lengths of the sides of the triangle.

2017 Yasinsky Geometry Olympiad, 2

In the tetrahedron $DABC, AB=BC, \angle DBC =\angle DBA$. Prove that $AC \perp DB$.

2001 Singapore MO Open, 1

In a parallelogram $ABCD$, the perpendiculars from $A$ to $BC$ and $CD$ meet the line segments $BC$ and $CD$ at the points $E$ and $F$ respectively. Suppose $AC = 37$ cm and $EF = 35$ cm. Let $H$ be the orthocentre of $\vartriangle AEF$. Find the length of $AH$ in cm. Show the steps in your calculations.

1987 Tournament Of Towns, (157) 1

From vertex $A$ in square $ABCD$ (of side length $1$ ) two lines are drawn , one intersecting side $BC$ and the other intersecting side $CD$. The angle between these lines is $\theta$. From vertices $B$ and $D$ we construct perpendiculars to each of these lines . Find the area of the quadrilateral whose vertices are the four feet of these perpendiculars.

1966 IMO Longlists, 15

Given four points $A,$ $B,$ $C,$ $D$ on a circle such that $AB$ is a diameter and $CD$ is not a diameter. Show that the line joining the point of intersection of the tangents to the circle at the points $C$ and $D$ with the point of intersection of the lines $AC$ and $BD$ is perpendicular to the line $AB.$

2024 Australian Mathematical Olympiad, P7

Let $ABCD$ be a square and let $P$ be a point on side $AB$. The point $Q$ lies outside the square such that $\angle ABQ = \angle ADP$ and $\angle AQB = 90^{\circ}$. The point $R$ lies on the side $BC$ such that $\angle BAR = \angle ADQ$. Prove that the lines $AR, CQ$ and $DP$ pass through a common point.

Kyiv City MO Juniors 2003+ geometry, 2021.9.51

Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. A line passing through point $B$ intersects $\omega_1$ for the second time at point $C$ and $\omega_2$ at point $D$. The line $AC$ intersects circle $\omega_2$ for the second time at point $F$, and the line $AD$ intersects the circle $\omega_1$ for the second time at point $E$ . Let point $O$ be the center of the circle circumscribed around $\vartriangle AEF$. Prove that $OB \perp CD$.

2017 Saudi Arabia JBMO TST, 3

Let $BC$ be a chord of a circle $(O)$ such that $BC$ is not a diameter. Let $AE$ be the diameter perpendicular to $BC$ such that $A$ belongs to the larger arc $BC$ of $(O)$. Let $D$ be a point on the larger arc $BC$ of $(O)$ which is different from $A$. Suppose that $AD$ intersects $BC$ at $S$ and $DE$ intersects $BC$ at $T$. Let $F$ be the midpoint of $ST$ and $I$ be the second intersection point of the circle $(ODF)$ with the line $BC$. 1. Let the line passing through $I$ and parallel to $OD$ intersect $AD$ and $DE$ at $M$ and $N$, respectively. Find the maximum value of the area of the triangle $MDN$ when $D$ moves on the larger arc $BC$ of $(O)$ (such that $D \ne A$). 2. Prove that the perpendicular from $D$ to $ST$ passes through the midpoint of $MN$

2002 Greece JBMO TST, 3

Let $ABC$ be a triangle with $\angle A=60^o, AB\ne AC$ and let $AD$ be the angle bisector of $\angle A$. Line $(e)$ that is perpendicular on the angle bisector $AD$ at point $A$, intersects the extension of side $BC$ at point $E$ and also $BE=AB+AC$. Find the angles $\angle B$ and $\angle C$ of the triangle $ABC$.

2013 Oral Moscow Geometry Olympiad, 4

Similar triangles $ABM, CBP, CDL$ and $ADK$ are built on the sides of the quadrilateral $ABCD$ with perpendicular diagonals in the outer side (the neighboring ones are oriented differently). Prove that $PK = ML$.

2004 Oral Moscow Geometry Olympiad, 4

Triangle $ABC$ is inscribed in a circle. Through points $A$ and $B$ tangents to this circle are drawn, which intersect at point $P$. Points $X$ and $Y$ are orthogonal projections of point $P$ onto lines $AC$ and $BC$. Prove that line $XY$ is perpendicular to the median of triangle $ABC$ from vertex $C$.

Kyiv City MO Seniors Round2 2010+ geometry, 2011.10.4

Let two circles be externally tangent at point $C$, with parallel diameters $A_1A_2, B_1B_2$ (i.e. the quadrilateral $A_1B_1B_2A_2$ is a trapezoid with bases $A_1A_2$ and $B_1B_2$ or parallelogram). Circle with the center on the common internal tangent to these two circles, passes through the intersection point of lines $A_1B_2$ and $A_2B_1$ as well intersects those lines at points $M, N$. Prove that the line $MN$ is perpendicular to the parallel diameters $A_1A_2, B_1B_2$. (Yuri Biletsky)

2007 Sharygin Geometry Olympiad, 12

A rectangle $ABCD$ and a point $P$ are given. Lines passing through $A$ and $B$ and perpendicular to $PC$ and $PD$ respectively, meet at a point $Q$. Prove that $PQ \perp AB$.

1981 Tournament Of Towns, (009) 3

$ABCD$ is a convex quadrilateral inscribed in a circle with centre $O$, and with mutually perpendicular diagonals. Prove that the broken line $AOC$ divides the quadrilateral into two parts of equal area. (V Varvarkin)

Geometry Mathley 2011-12, 4.2

Let $ABC$ be a triangle. $(K)$ is an arbitrary circle tangent to the lines $AC,AB$ at $E, F$ respectively. $(K)$ cuts $BC$ at $M,N$ such that $N$ lies between $B$ and $M$. $FM$ intersects $EN$ at $I$. The circumcircles of triangles $IFN$ and $IEM$ meet each other at $J$ distinct from $I$. Prove that $IJ$ passes through $A$ and $KJ$ is perpendicular to $IJ$. Trần Quang Hùng

the 4th XMO, 1

As shown in the figure, it is known that $BC= AC$ in $\vartriangle ABC$, $M$ is the midpoint of $AB$, points $D$, $E$ lie on $AB$ such that $\angle DCE= \angle MCB$, the circumscribed circle of $\vartriangle BDC$ and the circumscribed circle of $\vartriangle AEC$ intersect at point $F $(different from point $C$), point $H$ lies on $AB$ such that the straight line $CM$ bisects the line segment $HF$. Let the circumcenters of $\vartriangle HFE$ and $\vartriangle BFM$ be $O_1$, $O_2$ respectively. Prove that $O_1O_2 \perp CF$. [img]https://cdn.artofproblemsolving.com/attachments/8/c/62d4ecbc18458fb4f2bf88258d5024cddbc3b0.jpg[/img]

2018 Yasinsky Geometry Olympiad, 6

In the quadrilateral $ABCD$, the points $E, F$, and $K$ are midpoints of the $AB, BC, AD$ respectively. Known that $KE \perp AB, K F \perp BC$, and the angle $\angle ABC = 118^o$. Find $ \angle ACD$ (in degrees).

2015 Indonesia MO Shortlist, G2

Two circles that are not equal are tangent externally at point $R$. Suppose point $P$ is the intersection of the external common tangents of the two circles. Let $A$ and $B$ are two points on different circles so that $RA$ is perpendicular to $RB$. Show that the line $AB$ passes through $P$.

2017 Oral Moscow Geometry Olympiad, 2

An isosceles trapezoid $ABCD$ with bases $BC$ and $AD$ is given. Circles with centers $O_1$ and $O_2$ are inscribed in triangles $ABC$ and $ABD$. Prove that line $O_1O_2$ is perpendicular on $BC$.

2019 Oral Moscow Geometry Olympiad, 6

In the acute triangle $ABC$, the point $I_c$ is the center of excircle on the side $AB$, $A_1$ and $B_1$ are the tangency points of the other two excircles with sides $BC$ and $CA$, respectively, $C'$ is the point on the circumcircle diametrically opposite to point $C$. Prove that the lines $I_cC'$ and $A_1B_1$ are perpendicular.

2010 Peru MO (ONEM), 3

Consider $A, B$ and $C$ three collinear points of the plane such that $B$ is between $A$ and $C$. Let $S$ be the circle of diameter $AB$ and $L$ a line that passes through $C$, which does not intersect $S$ and is not perpendicular to line $AC$. The points $M$ and $N$ are, respectively, the feet of the altitudes drawn from $A$ and $B$ on the line $L$. From $C$ draw the two tangent lines to $S$, where $P$ is the closest tangency point to $L$. Prove that the quadrilateral $MPBC$ is cyclic if and only if the lines $MB$ and $AN$ are perpendicular.

2021 Polish Junior MO Second Round, 4

Points $K$ and $L$ are on the sides $BC$ and $CD$, respectively of the parallelogram $ABCD$, such that $AB + BK = AD + DL$. Prove that the bisector of angle $BAD$ is perpendicular to the line $KL$.

2011 Oral Moscow Geometry Olympiad, 5

In a convex quadrilateral $ABCD, AC\perp BD, \angle BCA = 10^o,\angle BDA = 20^o, \angle BAC = 40^o$. Find $\angle BDC$.