This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 86

1997 ITAMO, 4

Let $ABCD$ be a tetrahedron. Let $a$ be the length of $AB$ and let $S$ be the area of the projection of the tetrahedron onto a plane perpendicular to $AB$. Determine the volume of the tetrahedron in terms of $a$ and $S$.

2021-IMOC qualification, G1

Let $O$ be the circumcenter and $I$ be the incenter of $\vartriangle$, $P$ is the reflection from $I$ through $O$, the foot of perpendicular from $P$ to $BC,CA,AB$ is $X,Y,Z$, respectively. Prove that $AP^2+PX^2=BP^2+PY^2=CP^2+PZ^2$.

1956 Moscow Mathematical Olympiad, 339

Find the union of all projections of a given line segment $AB$ to all lines passing through a given point $O$.

1983 All Soviet Union Mathematical Olympiad, 358

The points $A_1,B_1,C_1,D_1$ and $A_2,B_2,C_2,D_2$ are orthogonal projections of the $ABCD$ tetrahedron vertices on two planes. Prove that it is possible to move one of the planes to provide the parallelness of lines $(A_1A_2), (B_1B_2), (C_1C_2)$ and $(D_1D_2)$ .

2015 Sharygin Geometry Olympiad, 2

A convex quadrilateral is given. Using a compass and a ruler construct a point such that its projections to the sidelines of this quadrilateral are the vertices of a parallelogram. (A. Zaslavsky)

VMEO III 2006, 10.1

Given a triangle $ABC$ ($AB \ne AC$). Let $ P$ be a point in the plane containing triangle $ABC$ satisfying the following property: If the projections of $ P$ onto $AB$,$AC$ are $C_1$,$B_1$ respectively, then $\frac{PB}{PC}=\frac{PC_1}{PB_1}=\frac{AB}{AC}$ or $\frac{PB}{PC}=\frac{PB_1}{PC_1}=\frac{AB}{AC}$. Prove that $\angle PBC + \angle PCB = \angle BAC$.

1985 Tournament Of Towns, (096) 5

A square is divided into rectangles. A "chain" is a subset $K$ of the set of these rectangles such that there exists a side of the square which is covered by projections of rectangles of $K$ and such that no point of this side is a projection of two inner points of two inner points of two different rectangles of $K$. (a) Prove that every two rectangles in such a division are members of a certain "chain". (b) Solve the similar problem for a cube, divided into rectangular parallelopipeds (in the definition of chain , replace "side" by"edge") . (A.I . Golberg, V.A. Gurevich)

1951 Moscow Mathematical Olympiad, 205

Among all orthogonal projections of a regular tetrahedron to all possible planes, find the projection of the greatest area.

Swiss NMO - geometry, 2012.10

Let $O$ be an inner point of an acute-angled triangle $ABC$. Let $A_1, B_1$ and $C_1$ be the projections of $O$ on the sides $BC, AC$ and $AB$ respectively . Let $P$ be the intersection of the perpendiculars on $B_1C_1$ and $A_1C_1$ from points$ A$ and $B$ respectilvey. Let $H$ be the projection of $P$ on $AB$. Show that points $A_1, B_1, C_1$ and $H$ lie on a circle.

2008 Danube Mathematical Competition, 3

On a semicircle centred at $O$ and with radius $1$ choose the respective points $A_1,A_2,...,A_{2n}$ , for $n \in N^*$. The lenght of the projection of the vector $\overrightarrow {u}=\overrightarrow{OA_1} +\overrightarrow{OA_2}+...+\overrightarrow{OA_{2n}}$ on the diameter is an odd integer. Show that the projection of that vector on the diameter is at least $1$.

1993 ITAMO, 4

Let $P$ be a point in the plane of a triangle $ABC$, different from its circumcenter. Prove that the triangle whose vertices are the projections of $P$ on the perpendicular bisectors of the sides of $ABC$, is similar to $ABC$.

2008 Oral Moscow Geometry Olympiad, 4

A circle can be circumscribed around the quadrilateral $ABCD$. Point $P$ is the foot of the perpendicular drawn from point $A$ on line $BC$, and respectively $Q$ from $A$ on $DC$, $R$ from $D$ on $AB$ and $T$ from $D$ on $BC$ . Prove that points $P,Q,R$ and $T$ lie on the same circle. (A. Myakishev)

1968 IMO Shortlist, 13

Given two congruent triangles $A_1A_2A_3$ and $B_1B_2B_3$ ($A_iA_k = B_iB_k$), prove that there exists a plane such that the orthogonal projections of these triangles onto it are congruent and equally oriented.

Kharkiv City MO Seniors - geometry, 2019.11.5

In the acute-angled triangle $ABC$, let $CD, AE$ be the altitudes. Points $F$ and $G$ are the projections of $A$ and $C$ on the line $DE$, respectively, $H$ and $K$ are the projections of $D$ and $E$ on the line $AC$, respectively. The lines $HF$ and $KG$ intersect at point $P$. Prove that line $BP$ bisects the segment $DE$.

1982 Bundeswettbewerb Mathematik, 2

Decide whether every triangle $ABC$ in space can be orthogonally projected onto a plane such that the projection is an equilateral triangle $A'B'C'$.

2011 Portugal MO, 5

Let $[ABC]$ be a triangle, $D$ be the orthogonal projection of $B$ on the bisector of $\angle ACB$ and $E$ the orthogonal projection of $C$ on the bisector of $\angle ABC$ . Prove that $DE$ intersects the sides $[AB]$ and $[AC]$ at the touchpoints of the circle inscribed in the triangle $[ABC]$.

2010 Thailand Mathematical Olympiad, 3

Let $\vartriangle ABC$ be a scalene triangle with $AB < BC < CA$. Let $D$ be the projection of $A$ onto the angle bisector of $\angle ABC$, and let $E$ be the projection of $A$ onto the angle bisector of $\angle ACB$. The line $DE$ cuts sides $AB$ and AC at $M$ and $N$, respectively. Prove that $$\frac{AB+AC}{BC} =\frac{DE}{MN} + 1$$

2018 Oral Moscow Geometry Olympiad, 1

In a right triangle $ABC$ with a right angle $C$, let $AK$ and $BN$ be the angle bisectors. Let $D,E$ be the projections of $C$ on $AK, BN$ respectively. Prove that the length of the segment $DE$ is equal to the radius of the inscribed circle.

Estonia Open Junior - geometry, 2009.2.4

The triangle $ABC$ is $| BC | = a$ and $| AC | = b$. On the ray starting from vertex $C$ and passing the midpoint of side $AB$ , choose any point $D$ other than vertex $C$. Let $K$ and $L$ be the projections of $D$ on the lines $AC$ and $BC$, respectively, $K$ and $L$. Find the ratio $| DK | : | DL |$.

1994 Czech And Slovak Olympiad IIIA, 2

A cuboid of volume $V$ contains a convex polyhedron $M$. The orthogonal projection of $M$ onto each face of the cuboid covers the entire face. What is the smallest possible volume of polyhedron $M$?

2009 Sharygin Geometry Olympiad, 5

Given triangle $ABC$. Point $M$ is the projection of vertex $B$ to bisector of angle $C$. $K$ is the touching point of the incircle with side $BC$. Find angle $\angle MKB$ if $\angle BAC = \alpha$ (V.Protasov)

1969 Poland - Second Round, 5

Prove that if, in parallel projection of one plane onto another plane, the image of a certain square is a square, then the image of every figure is the figure congruent to it.

2003 Estonia Team Selection Test, 6

Let $ABC$ be an acute-angled triangle, $O$ its circumcenter and $H$ its orthocenter. The orthogonal projection of the vertex $A$ to the line $BC$ lies on the perpendicular bisector of the segment $AC$. Compute $\frac{CH}{BO}$ . (J. Willemson)

2009 Balkan MO Shortlist, G3

Let $ABCD$ be a convex quadrilateral, and $P$ be a point in its interior. The projections of $P$ on the sides of the quadrilateral lie on a circle with center $O$. Show that $O$ lies on the line through the midpoints of $AC$ and $BD$.

2010 Balkan MO Shortlist, G4

Let $ABC$ be a given triangle and $\ell$ be a line that meets the lines $BC, CA$ and $AB$ in $A_1,B_1$ and $C_1$ respectively. Let $A'$ be the midpoint, of the segment connecting the projections of $A_1$ onto the lines $AB$ and $AC$. Construct, analogously the points $B'$ and $C'$. (a) Show that the points $A', B'$ and $C'$ are collinear on some line $\ell'$. (b) Show that if $\ell$ contains the circumcenter of the triangle $ABC$, then $\ell' $ contains the center of it's Euler circle.