This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 48

2010 Oral Moscow Geometry Olympiad, 5

All edges of a regular right pyramid are equal to $1$, and all vertices lie on the side surface of a (infinite) right circular cylinder of radius $R$. Find all possible values of $R$.

III Soros Olympiad 1996 - 97 (Russia), 9.7

Find the side of the smallest regular triangle that can be inscribed in a right triangle with an acute angle of $30^o$ and a hypotenuse of $2$. (All vertices of the required regular triangle must be located on different sides of this right triangle.)

2011 Sharygin Geometry Olympiad, 4

Given the circle of radius $1$ and several its chords with the sum of lengths $1$. Prove that one can be inscribe a regular hexagon into that circle so that its sides don’t intersect those chords.

1979 All Soviet Union Mathematical Olympiad, 269

What is the least possible ratio of two isosceles triangles areas, if three vertices of the first one belong to three different sides of the second one?

Brazil L2 Finals (OBM) - geometry, 2002.5

Let $ABC$ be a triangle inscribed in a circle of center $O$ and $P$ be a point on the arc $AB$, that does not contain $C$. The perpendicular drawn fom $P$ on line $BO$ intersects $AB$ at $S$ and $BC$ at $T$. The perpendicular drawn from $P$ on line $AO$ intersects $AB$ at $Q$ and $AC$ at $R$. Prove that: a) $PQS$ is an isosceles triangle b) $PQ^2=QR= ST$

2020 Durer Math Competition Finals, 13

In triangle $ABC$ we inscribe a square such that one of the sides of the square lies on the side $AC$, and the other two vertices lie on sides $AB$ and $BC$. Furthermore we know that $AC = 5$, $BC = 4$ and $AB = 3$. This square cuts out three smaller triangles from $\vartriangle ABC$. Express the sum of reciprocals of the inradii of these three small triangles as a fraction $p/q$ in lowest terms (i.e. with $p$ and $q$ coprime). What is $p + q$?

1975 Bundeswettbewerb Mathematik, 3

Describe all quadrilaterals with perpendicular diagonals which are both inscribed and circumscribed.

2011 Oral Moscow Geometry Olympiad, 6

One triangle lies inside another. Prove that at least one of the two smallest sides (out of six) is the side of the inner triangle.

2010 Sharygin Geometry Olympiad, 4

Projections of two points to the sidelines of a quadrilateral lie on two concentric circles (projections of each point form a cyclic quadrilateral and the radii of circles are different). Prove that this quadrilateral is a parallelogram.

2021 Iranian Geometry Olympiad, 2

Points $K, L, M, N$ lie on the sides $AB, BC, CD, DA$ of a square $ABCD$, respectively, such that the area of $KLMN$ is equal to one half of the area of $ABCD$. Prove that some diagonal of $KLMN$ is parallel to some side of $ABCD$. [i]Proposed by Josef Tkadlec - Czech Republic[/i]

2005 Sharygin Geometry Olympiad, 8

Around the convex quadrilateral $ABCD$, three rectangles are circumscribed . It is known that two of these rectangles are squares. Is it true that the third one is necessarily a square? (A rectangle is circumscribed around the quadrilateral $ABCD$ if there is one vertex $ABCD$ on each side of the rectangle).

2016 Saudi Arabia Pre-TST, 2.3

Let $ABC$ be a non isosceles triangle with circumcircle $(O)$ and incircle $(I)$. Denote $(O_1)$ as the circle internal tangent to $(O)$ at $A_1$ and also tangent to segments $AB,AC$ at $A_b,A_c$ respectively. Define the circles $(O_2), (O_3)$ and the points $B_1, C_1, B_c , B_a, C_a, C_b$ similarly. 1. Prove that $AA_1, BB_1, CC_1$ are concurrent at the point $M$ and $3$ points $I,M,O$ are collinear. 2. Prove that the circle $(I)$ is inscribed in the hexagon with $6$ vertices $A_b,A_c , B_c , B_a, C_a, C_b$.

Kyiv City MO 1984-93 - geometry, 1989.8.5

The student drew a right triangle $ABC$ on the board with a right angle at the vertex $B$ and inscribed in it an equilateral triangle $KMP$ such that the points $K, M, P$ lie on the sides $AB, BC, AC$, respectively, and $KM \parallel AC$. Then the picture was erased, leaving only points $A, P$ and $C$. Restore erased points and lines.

2005 BAMO, 5

Let $D$ be a dodecahedron which can be inscribed in a sphere with radius $R$. Let $I$ be an icosahedron which can also be inscribed in a sphere of radius $R$. Which has the greater volume, and why? Note: A regular [i]polyhedron [/i] is a geometric solid, all of whose faces are congruent regular polygons, in which the same number of polygons meet at each vertex. A regular dodecahedron is a polyhedron with $12$ faces which are regular pentagons and a regular icosahedron is a polyhedron with $20$ faces which are equilateral triangles. A polyhedron is inscribed in a sphere if all of its vertices lie on the surface of the sphere. The illustration below shows a dodecahdron and an icosahedron, not necessarily to scale. [img]https://cdn.artofproblemsolving.com/attachments/7/5/9873b42aacf04bb5daa0fe70d4da3bf0b7be38.png[/img]

Ukrainian TYM Qualifying - geometry, IV.7

Let $ABCD$ be the quadrilateral whose area is the largest among the quadrilaterals with given sides $a, b, c, d$, and let $PORS$ be the quadrilateral inscribed in $ABCD$ with the smallest perimeter. Find this perimeter.

2006 Bosnia and Herzegovina Team Selection Test, 2

It is given a triangle $\triangle ABC$. Determine the locus of center of rectangle inscribed in triangle $ABC$ such that one side of rectangle lies on side $AB$.

1975 Kurschak Competition, 2

Prove or disprove: given any quadrilateral inscribed in a convex polygon, we can find a rhombus inscribed in the polygon with side not less than the shortest side of the quadrilateral.

1999 All-Russian Olympiad Regional Round, 8.3

On sides $BC$, $CA$, $AB$ of triangle $ABC$, points $A_1$, $B_1$, $C_1$ are chosen, respectively, so that the medians $A_1A_2$, $B_1B_2$, $C_1C_2$ of the triangle $A_1B_1C_1$ are respectively parallel to straight lines $AB$, $BC$, $CA$. Determine in what ratio points $A_1$, $B_1$, $C_1$ divide the sides of the triangle $ABC$.

Durer Math Competition CD Finals - geometry, 2012.C3

Given a convex quadrilateral whose opposite sides are not parallel, and giving an internal point $P$. Find a parallelogram whose vertices are on the side lines of the rectangle and whose center is $P$. Give a method by which we can construct it (provided there is one). [img]https://1.bp.blogspot.com/-t4aCJza0LxI/X9j1qbSQE4I/AAAAAAAAMz4/V9pr7Cd22G4F320nyRLZMRnz18hMw9NHQCLcBGAsYHQ/s0/2012%2BDurer%2BC3.png[/img]

1984 Tournament Of Towns, (070) T4

Inside a rectangle is inscribed a quadrilateral, which has a vertex on each side of the rectangle. Prove that the perimeter of the inscribed quadrilateral is not smaller than double the length of a diagonal of the rectangle. (V. V . Proizvolov , Moscow)

1991 Chile National Olympiad, 2

If a polygon inscribed in a circle is equiangular and has an odd number of sides, prove that it is regular.

1915 Eotvos Mathematical Competition, 3

Prove that a triangle inscribed in a parallelogram has at most half the area of the parallelogram.

2010 Saudi Arabia Pre-TST, 2.4

Let $AMNB$ be a quadrilateral inscribed in a semicircle of diameter $AB = x$. Denote $AM = a$, $MN = b$, $NB = c$. Prove that $x^3- (a^2 + b^2 + c^2)x -2abc = 0$.

2006 Tournament of Towns, 5

Can a regular octahedron be inscribed in a cube in such a way that all vertices of the octahedron are on cube's edges? (4)

1949-56 Chisinau City MO, 42

A trapezoid and an isosceles triangle are inscribed in a circle. The larger base of the trapezoid is the diameter of the circle, and the sides of the triangle are parallel to the sides of the trapezoid. Show that the trapezoid and the triangle have equal areas.